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Intraspecific biodiversity can have ecosystem-level consequences and may
affect the accuracy of ecological forecasting. For example, rare genetic
variants may have traits that prove beneficial under future environmental
conditions. The cyanobacterium responsible for most freshwater harmful
algal blooms worldwide, Microcystis aeruginosa, occurs in at least three
types. While the dominant type occurs in eutrophic environments and
is adapted to thrive in nutrient-rich conditions, two additional types
have recently been discovered that inhabit oligotrophic and eutrophic
environments and have genomic adaptations for survival under nutrient
limitation. Here, we show that these oligotrophic types are widespread
throughout the Eastern USA. By pairing an experimental warming study
with gene expression analyses, we found that the eutrophic type may be
most susceptible to climate warming. In comparison, oligotrophic types
maintained their growth better and persisted longer under warming. As
a mechanistic explanation for these patterns, we found that oligotrophic
types responded to warming by widespread elevated expression of heat
shock protein genes. Reduction of nutrient loading has been a historically
effective mitigation strategy for controlling harmful algal blooms. Our
results suggest that climate warming may benefit oligotrophic types of M.
aeruginosa, potentially reducing the effectiveness of such mitigation efforts.
In-depth study of intraspecific variation may therefore improve forecasting
for understanding future whole ecosystem dynamics.

1. Introduction
Variation within a species can rival the effects of variation among species
in regulating whole ecosystem dynamics, including biogeochemical cycling
[1,2]. Standing genetic variation within a species can also be a critical resource
when leveraged in response to changing environmental conditions. Using
a species that is known to have widespread ecosystem level effects under
current environmental conditions, we investigate how standing intraspecific
variation may elucidate future ecosystem-level impacts of a species under
climate warming.

Cyanobacteria (formerly blue-green algae) are a clade of photosynthetic
prokaryotes and the oldest known oxygen-producing organisms on Earth,
with fossils dating back to before the great oxidation event [3]. The
clade is found across a diversity of environments, including eutrophic and
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oligotrophic lakes and tropical and polar regions [4,5]. Many species can form dense, and sometimes toxic, blooms which visibly
discolour their freshwater, brackish or marine environment and often have negative impacts on their ecosystem [6]. These
blooms also incur significant costs to tourism, agriculture, and human health [7].

The cyanobacterial clade has survived major changes in the Earth’s climate and bloom-forming species now seem to be
benefiting from the effects of anthropogenic climate change [6,8]. This includes more extreme precipitation (which can lead to
increased nutrient run-off into aquatic systems), droughts (which can lead to increased retention time of cyanobacteria within
lakes) and, critically, increased temperatures (which often give cyanobacterial species a competitive advantage over eukaryotic
algae) [8]. The advantages of higher temperatures to bloom-forming cyanobacteria are twofold. First, higher temperatures lead
to increased stratification of warmer water which favours buoyant cyanobacterial species while causing increased sedimentation
of non-buoyant eukaryotic algal species [9]. Second, many cyanobacteria have a competitive growth advantage at higher
temperatures, with optimal growth rates for cyanobacterial species often above 25°C [10,11]. Cyanobacterial blooms may even
create a positive feedback loop in which warmer waters promote blooms, which, due to highly concentrated photo-absorption
within the dense cyanobacterial blooms, leads to further warming of the surface waters [12,13]. A better understanding of the
interaction of harmful bloom-forming cyanobacteria and climate warming will therefore be important for the prediction and
mitigation of such harmful blooms in the future.

Microcystis aeruginosa is a widely distributed cyanobacterium that produces the hepatotoxin microcystin [14]. Toxic blooms
of M. aeruginosa have caused mass wildlife mortality events and have threatened human drinking water supplies [14–17].
Microcystis aeruginosa was previously found to exist as at least three distinct genotype–environment groups (hereafter 'bacterial
types') across lakes spanning a wide range of phosphorus levels in MI, USA [5]. The first bacterial type, which we refer to
as high-nutrient lake/high-nutrient genotype or HL/HG, encompasses strains found in nutrient-rich conditions and contains
the most well-known type of M. aeruginosa identified in eutrophic systems throughout the world. There is extensive genotypic
diversity within this type, which has been well described previously [5]. A second bacterial type, which we refer to as LL/LG
(low-nutrient lake/low-nutrient genotype), is restricted to oligotrophic, nutrient-poor ecosystems while the third bacterial type,
which we refer to as HL/LG (high-nutrient lake/low-nutrient genotype), is most phylogenetically related to LL/LG but in fact
occurs in eutrophic and mesotrophic lakes. The HG versus LG classifications were originally determined using metagenome
similarity-based clustering, with the genomes in the LG cluster showing signs of genome streamlining [5]. The HL classification
is assigned to strains isolated from eutrophic and mesotrophic lakes, whereas the LL classification is assigned to strains
isolated from oligotrophic lakes using a 10 µg l−1 total phosphorus (TP) threshold for the oligotrophic–mesotrophic boundary
[18]. Overall, this classification of M. aeruginosa strains into these three types is well supported by (i) a highly resolved
multi-gene phylogeny, (ii) clustering of genome characteristics (particularly enrichment of genome streamlining traits in the
oligotrophic types) and (iii) strong similarity within types in functional capability, as determined by a genome-wide protein
functional analysis using shotgun metagenomics [5]. Our prior work suggests that the HL/LG bacterial type takes advantage of
low-nutrient microenvironments within eutrophic and mesotrophic lakes, as both LL/LG and HL/LG strains show adaptations
that would facilitate survival in low-nutrient conditions [5].

Harmful blooms of M. aeruginosa are thought to be primarily driven by excess nutrient loading, with reduction in phos-
phorus run-off into freshwater systems often proving successful in bloom reduction [19]. Populations of M. aeruginosa can
experience stress from both N and P limitation, particularly during established late-stage phases of blooms [16]. Therefore,
oligotrophic types may be situated to thrive within the later stages of blooms. Concerningly, M. aeruginosa appears not only
to have a competitive growth advantage but also to produce more toxins at higher temperatures [8]. Harmful blooms of M.
aeruginosa may therefore become more frequent and severe with climate change, and indeed, this may already be occurring in
one of the largest lakes in China, Lake Taihu [17].

While M. aeruginosa has a growth advantage at higher temperatures, increased temperatures are a cellular stressor that will
become detrimental to M. aeruginosa above a certain threshold. Specifically, increased temperatures can promote the misfolding
of newly synthesized proteins, as well as denaturation and damage to existing proteins [20]. The heat shock proteins (HSPs) are
a highly conserved and ubiquitous family of molecular chaperones, which can increase stress tolerance by preventing protein
misfolding and preserving protein homeostasis under stress [21]. While constitutive HSPs are expressed at low levels under
normal conditions, the expression of inducible forms of HSPs is greatly increased at elevated temperatures [22]. Thermotoler-
ance is characterized by elevated expression of inducible forms of HSPs [23]. Not only does M. aeruginosa have higher optimal
temperatures than many eukaryotic algae, but the cyanobacterium may also show increased tolerance to higher temperatures
due to frequent exposure to elevated temperatures caused by photon-absorption of dense blooms near the lake surface [13]. We,
therefore, hypothesize that certain types of M. aeruginosa, such as those occurring in late-stage blooms, might show elevated
expression of HSPs as a means for withstanding elevated temperatures.

Understanding the effects of warming on different types of M. aeruginosa will be essential to predict the frequency, duration
and intensity of harmful blooms under climate warming. Here, we isolated strains of M. aeruginosa from lakes of varying trophic
status across the midwestern and northeastern USA. We found that oligotrophic types previously identified in a small region
of Michigan are widespread throughout a much broader geographic region, expanding the relevance of these oligotrophic
types for harmful algal blooms [5]. We then employed strains from each of the three types of M. aeruginosa in an experimental
warming study, using four temperatures ranging from 20°C to 32°C, with the aim of evaluating the growth responses of strains
belonging to each type under elevated temperatures. Next, we investigated the mechanisms of thermotolerance within each
type by analysing the expression of HSPs during the warming study. Additionally, we evaluated the expression of one of the
genes in the microcystin (mcy) operon, which is responsible for production of the hepatotoxin microcystin. Overall, our results
clarify the current and potentially future relevance of oligotrophic types of M. aeruginosa, contributing to our ability to predict
and manage harmful algal blooms under climate warming.
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2. Methods
(a) Isolation and culturing of M. aeruginosa
Sampling and isolation methods are fully described elsewhere [5,24]. In brief, we collected M. aeruginosa and water samples for
nutrient analysis (electronic supplementary material, table S1) from lakes spanning a large productivity gradient (5.8−65 µg l−1

TP) in the midwestern and northeastern USA from July to August 2019. Microcystis colonies were isolated from water samples
via sequential pipette transfers using sterile 0.5× WC-S medium and a dissecting microscope [25]. These ‘washed’ colonies were
inoculated into 20 ml volumes of media. Only colonies with a distinctive shape and compact cell arrangement were selected
rather than loose aggregations of cells. Successfully established isolates were maintained at 21°C in 200 ml cultures under a
12:12 h light:dark cycle with 80 µmol m−2 s−1 fluorescent lighting. Inoculums of each culture were transferred monthly to fresh
media. While these cultures are not axenic, only closely associated bacteria should have remained after the initial isolation
procedure [26]. See methodology for strain genotyping and phylogenetics analyses in the electronic supplementary material.

(b) Warming experiment
We acclimated one biological replicate of each of 20 of our 24 isolated M. aeruginosa strains (electronic supplementary material,
table S1) to four temperatures, 20°C, 24°C, 28°C and 32°C, by gradually adjusting the temperature over 48 h. We chose a single
biological replicate per strain to focus our experimental design on bacterial types. We consider each strain as an independent
replicate of the same bacterial type, supported by previous work showing strong genomic similarities between strains of the
same type. Four deionized water baths were set up within a refrigerated incubator (Percival) with an ambient internal chamber
of 20°C. Heated treatments were warmed to their desired targets and maintained by submersible heaters. Each acclimated strain
× temperature combination was inoculated into 125 ml flasks of 0.5× WC-S medium and immersed in their respective bath.
To minimize variation in initial cell densities across treatments, we targeted an M. aeruginosa biomass equivalent to 1 µg l−1

chlorophyll-a, which is a routinely used surrogate for phytoplankton biomass. Cultures were grown without media replacement
under a 12:12 h light:dark cycle throughout the experiment. Biomass was subsampled weekly for the duration of the 35 day
experiment by vacuum-filtering 10 ml aliquots per flask onto 23 mm A/E glass fibre filters (Pall). Filters were immediately
frozen until used to determine M. aeruginosa growth via fluorometric analysis of chlorophyll-a following a 24 h dark extraction
in cold 90% ethanol, with acidification (Turner Designs) [24]. On day 35, a second replicate filter was collected and stored long
term at −80°C until RNA extraction.

(c) Quantifying gene expression
We extracted RNA with Invitrogen mirVana miRNA Isolation Kits following the protocol modifications of Fortunato & Huber
[27]. We synthesized cDNA using the SuperScript III First-Strand Synthesis System and random hexamer primers. Quantitative
real-time PCR was then performed for M. aeruginosa gene targets that are involved in heat stress responses (ClpB, DnaJ, DnaK1,
DnaK3, DnaK-fp, GroEL, GroES, GrpE, HrcA, Hsp20, HspA, HtpG) and the reference housekeeping gene rpoA, using custom
primers designed for M. aeruginosa [28]; as well as the gene mcyE that correlates with toxin production using HEP primers
[29–31]. See methods in electronic supplementary material for details of gene expression analysis and all statistical analyses.

3. Results
We found LL/LG and HL/LG types previously described from oligotrophic lakes within an 8550 km2 region in Michigan span a
wider geographic range across the midwest and northeastern USA (figure 1; electronic supplementary material, figure S2). We
then used 20 strains in a warming experiment, including seven assigned to HL/HG, five to HL/LG and seven to LL/LG. The final
strain, belonging to a bacterial type not found in our prior work as it had an HG genotype but originated from an oligotrophic
lake, was excluded from further analyses.

We first evaluated M. aeruginosa growth patterns during exponential growth in Week 1 of the warming study. We found
that exponential growth varied by bacterial type, with a trend of type-specific responses to temperature (figure 2; linear
mixed-effects (LME) model: type F2,16 = 164.16, p = 0.035, η2p = 0.34; temperature F3,48 = 2.55, p = 0.067, η2p = 0.14; type ×
temperature F6,48 = 2.070, p = 0.074, η2p = 0.21). Similarly, we found strong support for different responses to temperature by
each type when using a hierarchical general additive model (GAM) framework, which does not have an assumption of linearity
(electronic supplementary material, table S2, GAM: type-specific trendlines p = 0.001, R2 = 27.9%). We found that most strains
grew with similar or higher growth rates at 24°C compared with 20°C: only two of seven HL/HG strains (28.6%), zero of five
HL/LG strains (0%) and one of seven LL/LG (14.3%) had lower growth rates at 24°C than 20°C with median increases in growth
rate from 20°C to 24°C for persisting strains of +78.2, +20.8 and+16.3%, respectively. In contrast, at higher temperatures, LG
strains were less negatively affected by temperature than HL/HG strains, specifically, six of seven HL/HG strains (85.7%) had
lower growth rates for 28°C compared with 20°C, while HL/LG had two of five (40%) and LL/LG had three of seven (42.9%)
with median differences in growth rate from 20°C to 28°C for persisting strains of −15.0, +10.4 and +1.4%, respectively. At
the highest temperature, all bacterial types had several strains negatively affected by temperature, as four of seven HL/HG
(57.1%), two of five HL/LG (40%) and four of seven LL/LG strains (57.1%) showed lower growth rates at 32°C when compared
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with 20°C, but overall LG strains were less negatively affected with a median difference in growth rate from 20°C to 32°C for
persisting strains of HL/LG at +137%, LL/LG at +26.1% and HL/HG at −20.4%.

Upon evaluating growth patterns across the entire four week study, we find that growth was again context dependent
on bacterial type (figure 3; electronic supplementary material, figure S3; LME with week as random effect: type F2,70 =
5.03, p = 0.009, η2p = 0.13; temperature F3,219 = 2.79, p = 0.042, η2p = 0.04; type × temperature F6,219 = 1.26, p = 0.28; see
electronic supplementary material, figure S3 for LME with week as fixed effect). Furthermore, we find strong support for
type-specific responses to temperature when dropping assumptions of linearity (electronic supplementary material, table S2,
GAM: type-specific trendlines p = 0.008, R2 = 23.7%; see electronic supplementary material, figure S3 for GAM with week as
a fixed effect). In particular, HL/LG strains tended to be less negatively affected by higher temperatures. However, all three
types show marked decline by Week 4, by which time inorganic nutrients may have become scarce. Specifically, HL/LG has the
highest average growth rate across all temperatures and weeks (Tukey’s tests: HL/HG versus HL/LG p = 0.008, HL/HG versus
LL/LG p = 0.760, HL/LG versus LL/LG p = 0.046). Additionally, while growth rates across the four weeks do not show significant
differences between bacterial types for 20°C and 24°C, there is a trend of higher growth rates for HL/LG versus HL/HG strains
at 28°C and 32°C, with HL/LG also differing from LL/LG at 32°C (Tukey’s tests: 28°C HL/LG versus HL/HG p = 0.05; 32°C
HL/LG versus HL/HG p = 0.035, HL/LG versus LL/LG p = 0.006; all other comparisons: p > 0.100).

By Week 4, all bacterial types had multiple strains starting to decline across all temperatures, but LG strains showed overall
greater persistence. Across all temperatures, we found positive growth rates in 6 of 28 HL/HG populations (21.4%), 10 of 20
HL/LG populations (50%), and 19 of 28 LL/LG populations (67.9%). We note that in Week 1, all HL/HG strains show positive

Figure 1. (A) Phylogenetic placement of 24 strains of Microcystis aeruginosa isolated in 2019 from lakes in the midwest and northeastern USA. These strains are nested
within a larger phylogeny from our original dataset, isolated in 2011−2013 from an 8550 km2 region of MI, USA. Phylogeny based on the rRNA-ITSc region obtained via
Sanger sequencing for 2019 strains and via extraction from metagenome assembled genomes for 2011−2013 strains. F19−02, G19−01 and CR19−01 excluded from
phylogeny due to poor sequence quality. Placement of CR19−01, when included despite quality, indicated by asterisk. (B–D) Geographic origin of all strains. Filled
dots indicate M. aeruginosa bacterial type, as determined by multi-locus sequence typing of metagenome-assembled genomes as described in [5]. Open dots indicate
assigned bacterial type for 2019 isolates. Dark blue rings depict M. aeruginosa originating from oligotrophic lakes (LL/LG); light-blue depicts those from eutrophic and
mesotrophic lakes that phylogenetically cluster with oligotrophic lakes (HL/LG type); green depicts all others from eutrophic and mesotrophic lakes (HL/HG); and half
light-blue, half green rings (shown in maps) depict lakes where both HL/LG and HL/HG were isolated. See electronic supplementary material, table S1 for strain and
lake metadata. HL, high-nutrient lake; HG, high-nutrient genotype; LG, low-nutrient genotype; LL, low-nutrient lake.
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growth, while three LL/LG strains show negative growth. However, we previously found that LL/LG strains generally grow
more slowly, which coupled with low cell densities at the start of the experiment, may have been more prone to measurement
errors that indicated negative growth while the more rapidly growing HL/HG strains show clear early growth followed by
rapid decline in the following weeks.

Further, population persistence (defined as holding a positive growth rate) over the four week experiment showed a strong
dependence on both temperature and bacterial type (figure 3; CLMM: type: p < 0.01, temperature: p < 0.01, type × temperature: p
= 0.45). Specifically, population persistence of HL/HG was notably lower at warmer temperatures, whereas a higher percentage
of populations of the oligotrophic types persisted through the end of the study. For example, by Week 3, only 37.5% (four
of seven) of HL/HG populations growing at 32°C showed positive growth compared with 100% (seven of seven) of LL/LG
populations. We see similar results when comparing LG versus HG genotypes at 28°C, with three HG strains (28.6%) showing
negative growth rates at Week 2, five (71.4%) by Week 3 and all (100%) strains no longer persisting by Week 4, while only one
LG strain (7.7%) is non-persisting by Week 2, three (23.1%) by Week 3 and only seven (53.8%) by Week 4.

Next, we ran separate models for each bacterial type. The HL/HG type showed an effect of temperature on growth rates
averaged across the four week experiment (HL/HG: temperature: F3,81 = 4.28, p = 0.007, η2p = 0.14). Specifically, we found
that HL/HG growth at 28°C was slower than the growth at both 20°C and 24°C, while the growth rate at 32°C did not
differ significantly from the other temperatures (Tukey’s tests: 28°C versus 20 °C p < 0.05, 28°C versus 24°C p < 0.05, all other
comparisons p > 0.10). In contrast, the two oligotrophic types were not affected by temperature (HL/LG: temperature: F3,57 =
0.626, p = 0.601, η2p = 0.03; LL/LG: temperature: F3,81 = 1.55, p = 0.208, η2p = 0.05).

Given that these results suggest that climate warming may have differing effects on oligotrophic versus eutrophic types
of M. aeruginosa, we aimed to further understand this phenomenon by evaluating the genetic content and gene expression
responses of each bacterial type under warming scenarios. Surveying shotgun metagenomic datasets of previously collected
M. aeruginosa, we found strain-level variation in copy number for genes involved in regulating thermotolerance (electronic
supplementary material, figure S4). To directly measure thermotolerance as a result of both differential gene copy number and
expression, we first tested for a widespread response of HSP family gene targets by including all measured HSPs in a single
model. Here, we found that the effects of temperature on gene expression were highly bacterial type-specific (figure 4; electronic
supplementary material, figures S5 and S6; analysis of variance (ANOVA): type: F2,16 = 2.17, p = 0.12, η2p = 0.02; temperature:
F2,402 = 10.02, p < 0.01, η2p = 0.05; type × temperature: F4,402 = 3.67, p < 0.01, η2p = 0.04); however, we note that a large percentage
of the variance in gene expression was not explained by our model, as indicated by the effect sizes. Most notably, the LL/LG
type, whose growth rates were largely unaffected by temperature, showed markedly elevated expression of HSPs at warmer
temperatures in comparison to other bacterial types (figure 4; electronic supplementary materials, figure S6). LL/LG had the
highest mean relative gene expression in 58.3% of all 36 gene-by-temperature combinations and, notably, the highest expression
in 75% of all 12 combinations within the 32°C treatment (figure 4). Further, the HL/LG type most often exhibited intermediate
expression between the other two types. This ordered pattern of expression (i.e. HL/HG < HL/LG < LL/LG) was evident at
warmer temperatures, including 46% of all 24 gene-by-temperature combinations at 28°C and 32°C (figure 4).

Given that constitutive versus inducible forms of HSPs may respond differently to thermal stress, we next focused on each
target gene individually. We found that HSP expression declined with temperature, as would be expected for constitutively
expressed proteins, including chaperones, for six different HSP targets (electronic supplementary material, figure S5; ANOVAs
with fixed effect of temperature for ClpB: F2,28 = 7.41, p < 0.01, η2p = 0.35; DnaJ: F2,28 = 12.66, p < 0.01, η2p = 0.47; DnaK-fp:
F2,28 = 8.20, p < 0.01, η2p = 0.37; DnaK3: F2,28 = 17.55, p < 0.01, η2p = 0.56; HrcA: F2,28 = 8.23, p < 0.01, η2p = 0.37; HtpG: F2,28

Figure 2. Exponential growth rates of oligotrophic types of Microcystis aeruginosa, HL/LG (5 strains) and LL/LG (7 strains), were, respectively, elevated or less
negatively affected under warmer temperatures than the eutrophic HL/HG type (7 strains). Lines connect measurements of each strain grown across four temperatures.
LME model showed a significant effect of type (p < 0.05), and a weaker effect of temperature and their interaction (p < 0.08). Further, a GAM with a type-specific
responses to temperature fitted the data significantly better than a global response GAM. Note, the LL/LG outlier at 24°C is omitted from the strain’s trendline but
retained in statistical analysis. HL, high-nutrient lake; HG, high-nutrient genotype; LG, low-nutrient genotype; LL, low-nutrient lake.
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= 3.47, p = 0.045, η2p = 0.20). Toxin gene expression also declined with temperature for each bacterial type (electronic supple-
mentary material, figure S7; mcyE: F2,28 = 12.09, p < 0.01, η2p = 0.46). However, in sharp contrast to this decline in expression
with temperature, two HSPs were upregulated among oligotrophic types at warmer temperatures (electronic supplementary
material, figure S5; ANOVA type × temperature for DnaK1: F4,28 = 2.83, p = 0.044, η2p = 0.29 and Hsp20: F4,28 = 2.90, p = 0.040,
η2p = 0.29). Further, our results suggest a more finally tuned response to temperature increase in LG versus HG genotypes.
Specifically, for LL/LG, five genes were differentially expressed between 24°C and 32°C (Tukey’s tests: DnaJ, DnaK-fp, DnaK3,
MycE, Hsp20 and HtpG, all p < 0.05), and three were differentially expressed between 28°C and 32°C (MycE, DnaK1, and
Hsp20, all p < 0.05). Similarly, for HL/LG, three genes were differentially expressed between 24°C and 32°C (Tukey’s tests:
DnaJ, DnaK3, and HrcA, all p < 0.05), and four were differentially expressed between 28°C and 32°C (DnaJ, DnaK-fp, DnaK3
and HrcA, all p < 0.05). In contrast to these results for oligotrophic types, for HL/HG, we found less evidence of differential
expression. Specifically, while four genes were differentially expressed between 24°C and 32°C (Tukey’s tests: DnaJ, DnaK3,
MycE and HrcA, all p < 0.05), none were differentially expressed between 28°C and 32°C.

While we found clear variation between bacterial types, substantial variation within types in terms of both growth dynamics
and gene expression is evident. We found that despite this intratype variation, bacterial type is a strong predictor of strain
growth and expression rates (MANOVA: type F34,58 = 2.74, p < 0.001, η2p = 0.62; temperature F34,58 = 1.39, p = 0.131; type ×
temperature: F68,124 = 0.70, p = 0.950). Additionally, bacterial type remains a significant predictor when considering only growth
dynamics or only gene expression rates in separate multivariate models (growth dynamics only model: type F8,84 = 2.24, p =
0.032, η2p = 0.18; temperature F8,84 = 1.87, p = 0.075, η2p = 0.15; type × temperature: F16,176 = 0.89, p = 0.584; Gene expression only
model: type F26,66 = 3.40, p < 0.0001, η2p = 0.57; temperature F26,66 = 0.97, p = 0.520; type × temperature: F52,140 = 0.58, p = 0.99).
We also found clear clustering by type using a linear discriminates analysis. Specifically, LG and HG strains separated along the
first axis of discrimination, which explained 74.7% of the between-class variation and was most heavily weighted by Week 3 and
4 growth rates, and ClpB, DnaK3, DnaK-fp, GroES, GroEL, Hep, HrcA, HspA, and Hsp20 expression; while HL/LG and LL/LG

Figure 3. Bacterial type predicts growth rates and population persistence of Microcystis aeruginosa (see growth curves in electronic supplementary material, figure
S3). Negative growth rates (i.e. population decline) shown with filled black data points and positive growth rates (i.e. population persistence) shown with open white
points. Points spread on the x-axis for visibility but have no y-axis value alteration. LME model indicated significant effect of type (p < 0.01) and temperature (p <
0.05) on growth rates. A GAM with type-specific responses to temperature performed significantly better than a global response GAM. A cumulative link mixed-effect
model for population persistence with strain and time point as random effects showed a significant effect of type and temperature. GAM, general additive model; HL,
high-nutrient lake; HG, high-nutrient genotype; LG, low-nutrient genotype; LL, low-nutrient lake.
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strains separated along the second axis of discrimination, which explained 25.3% of the between-class variation and was most
heavily weighted by differences in week 1 and 2 growth rates, and DnaK1, DnaJ, GrpE, and HtpG expression rates (figure 5;
electronic supplementary material, figure S8 and table S3).

Figure 4. Bacterial type-specific responses to temperature of Microcystis aeruginosa through differential expression of genes encoding for heat shock. Type-specific
responses to temperature were also observed for two models run on individual gene targets DnaK1 and Hsp20. Relative gene expression calculated as 2(-ΔΔCt), with
rpoA as the reference gene and 20°C as the reference condition. For visualization, each faceted plot has its own y-axis. See electronic supplementary material, figure
S5 for the same data highlighting within-type responses to temperature and electronic supplementary material, figure S6 for normalized rather than raw data, with
individual data points shown.

Figure 5. Bacterial types differ in overall patterns of growth and gene expression dynamics via linear discriminant analysis. Arrows indicate coefficients of variance
explained by each variable (see electronic supplementary material, figure S8 for magnification of gene expression arrows). Data for all temperatures except 20°C are
included in the model to allow for the calculation of relative gene expression with 20°C as the baseline. Week x refers to the growth rate during that week.
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4. Discussion
Microcystis aeruginosa is the dominant cause of freshwater harmful algal blooms worldwide and can inhabit an impressive
range of environments that span over 20-fold in phosphorus levels due in part to extensive genetic diversity [32–34]. We show
that this intraspecific biodiversity within M. aeruginosa is essential for predicting how this cyanobacterium will respond to the
warming climate [6]. Overall, our results suggest that the M. aeruginosa types show different patterns of growth in response
to temperature, both during exponential growth and across a month of heat exposure. We find that oligotrophic-adapted
bacterial types of M. aeruginosa are more likely to survive long term at higher temperatures, with their exponential rates of
growth generally unaffected by or even benefitting from much warmer temperatures. In contrast, the classic eutrophic type of
M. aeruginosa showed a notable decrease in growth rate and population persistence at higher temperatures, especially across
longer timespans, suggesting that climate warming may cause strains of this type to experience a competitive disadvantage.
Interestingly, the typically slower growing LL/LG was generally intermediate in growth rate between HL/LG and HL/HG at
higher temperatures, suggesting that it survives better than HL/HG but lacks the rapid growth of HL/LG. The latter shows
genomic markers for surviving oligotrophic conditions but may nonetheless be better equipped to utilize the higher nutrient
environment of the mesotrophic and eutrophic lakes that these strains were originally isolated from.

Considering that not all strains of M. aeruginosa carry the mcy toxin operon whose product causes wildlife mortality and
human illness, and that oligotrophic strains are more likely to carry functional mcy operons, our results suggest that future
blooms that develop under climate warming may become more toxic and more tolerant of low-nutrient conditions [35]. This
result is in-line with the growing evidence that cyanobacterial blooms are becoming more toxic through time [36,37]. However,
the competitive dynamics in complex natural systems are multifactorial and challenging to predict from outcomes of controlled
laboratory-based experiments, so additional investigation into whether oligotrophic strains will indeed become more prevalent
in natural systems under climate warming should be further investigated. Furthermore, we acknowledge that, while our
bacterial type groupings are supported by genomic evidence from our previous work (including a high-resolution phylogeny
and genome-wide protein functional analyses), as well as a multivariate analysis in this study, our results nevertheless also
highlight the level of between-strain variability found within these bacterial types [5]. Additional investigation to better parse
and explain this inter- and intratype variation will be necessary to further expand and refine our understanding of these
bacterial types of M. aeruginosa.

We previously documented the differential abundance of these three bacterial types of M. aeruginosa across a 20-fold gradient
of TP in Michigan lakes [5]. Here, we show that this pattern of locally adapted bacterial types exists across a much larger region
of lakes spanning the midwestern and eastern USA. Other cyanobacteria are also known to exhibit clades based on environmen-
tal conditions; for example, Prochlorococcus populations group into clades adapted to high- and low light intensity which occupy
and exploit different depths of the euphotic zone in the ocean [38,39]. Furthermore, the major light intensity-adapted clades
of Prochlorococcus are subdivided into further genomic subclades, several of which have evidence for adaptation to specific
temperature ranges or/and nutrient conditions such as iron limitation [38,40]. For example, there is evidence that while the
whole genome content within the HLII clade of Prochlorococcus is best explained by temperature, its phylogenetic subclades are
most strongly linked to adaptation to P limitation [41]. The impressive diversity in these marine cyanobacteria is suggested to be
a form of niche partitioning, allowing them to fill the many available microniches in the highly spatiotemporally variable ocean.
In a similar manner, the bacterial types we previously described in M. aeruginosa, and find further evidence for in this study, are
suggestive of adaptation to local niches in freshwater lakes, including both high and low phosphorus niches in eutrophic and
mesotrophic lakes and the low phosphorus conditions of oligotrophic lakes [5]. As other cyanobacteria, such as Prochlorococcus,
have been shown to have subclades adapted to differing temperature conditions within their major clades, it is conceivable
that strains of M. aeruginosa grouped by our nutrient-limitation-based types may show considerable variation in their response
to temperature. Indeed, our bacterial types do exhibit appreciable intratype variation. Still, with evidence of genome-wide
functional similarity within types, such as adaptation to oligotrophic conditions among LG strains via genome streamlining and
increased copies of phosphorus acquisition genes, paired with the clustering by bacterial type for growth and expression rate
patterns that we observed within this study, our results suggest that for M. aeruginosa these types remain a useful and predictive
means of categorization [5]. Nevertheless, future studies to better characterize intratype variation in temperature tolerance of
M. aeruginosa clades will be essential to fully understand the complex environmental adaptation and future potential of M.
aeruginosa.

While oligotrophic types have not yet been documented outside of North America, there is strong evidence that M. aerugi‐
nosa is capable of global dispersal. For example, early research on the biogeography of M. aeruginosa found no clear correlation
between genetic and geographic distance, and although more recent research has identified patterns of genetic structure across
spatial scales, the ability of Microcystis to disperse globally is well accepted [42–44]. Mechanisms of dispersal are thought to
include aerosols, atmospheric bridges and both human- and wildlife-mediated dispersal [45–48]. Therefore, oligotrophic types
might readily disperse into both inland waters previously uninhabited by Microcystis and those currently dominated by the
eutrophic type. Such potentially rapid dispersal suggests that even if future environmental conditions caused by climate change
and human activities cause mismatches between strains and lake conditions [34], these effects might be temporary with the
rapid establishment of alternative bacterial types adapted to and capable of forming blooms under the new conditions.

To further investigate the mechanistic underpinnings of how each M. aeruginosa type tolerates warming, we analysed gene
expression in the HSP gene family. In agreement with our growth rate and population persistence data, we found that the
eutrophic and oligotrophic types responded differently in their expression patterns to warming. While all three types showed
differential expression across the HSP gene family in response to warming, the magnitude of this heat shock response was
substantially greater among oligotrophic types, as indicated by a significant type × temperature interaction in our statistical
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model. These results provide a mechanistic foundation for the observed higher rates of population persistence of these types,
suggesting that as the climate warms, either strains of the HL/HG type will have to adapt or may be outcompeted by the
oligotrophic-adapted types.

While we found that bacterial type-specific responses to temperature were widespread across the HSP gene family, we
found that two genes in particular, DnaK1 and Hsp20, showed contrasting responses between the oligotrophic and eutrophic
types. The DnaK gene family, or HSP70 family, is a ubiquitous family of highly conserved molecular chaperones containing
both constitutively expressed and stress-inducible forms [21]. Hsp20s, which belong to the small HSP family, are known for
their strong induction by a variety of heat stresses [49,50]. Protein expression, both of constitutive HSPs as well as a diverse
range of other proteins, are often downregulated during thermal stress due to slowing of translation as a whole and prioritized
production of inducible forms of HSPs that are key for organismal survival during heat stress [51]. Our results suggest that
oligotrophic types are more thermotolerant than the eutrophic type by maintaining elevated levels of constitutively expressed
HSPs at warmer temperatures, as well as by substantially upregulating inducible HSPs, including DnaK1 and HSP20. However,
there also remains appreciable intratype variation in gene expression. As previously discussed, some other cyanobacterial
clades have been shown to contain subclades adapted to different temperatures. Therefore, while our motivation was to
investigate type level trends in this study, an important future direction will be to further investigate intratype variation
in thermotolerance. In summary, in addition to elevated expression by oligotrophic types of M. aeruginosa compared with
the eutrophic type across most of the tested gene targets within the HSP family, we find highly type-specific responses to
temperature in key members of both large and small HSPs responsible for mediating the heat shock response.

Our results share some similarities with prior work on the expression of HSPs in M. aeruginosa that found the upregulation of
HspA and HtpG in response to heat and cold shocks [28]. Our warming experiment found a significant effect of temperature on
HtpG expression, although not HspA. However, it should be noted that we used an acclimation approach to our warming study
rather than a temperature shock. This probably elicits a different physiological response with those HSPs that respond rapidly
to heat spikes typically different from those that respond to persistent high temperatures over long time periods.

We also found that temperature had a negative effect on the expression of mcyE, which is indicative of microcystin produc-
tion in approximately 80% of cases [31]. However, our result contrasts with a recent meta-analysis that found a positive
correlation between temperature and microcystin [36]. Additionally, we did not find a significant effect of bacterial type on
the differential expression of mcyE. Based on prior work that had found the functional mcy operon to be more prevalent
among oligotrophic types, we hypothesized that we might find greater expression responses of mcyE among these types [35].
While we did not find evidence to support this, nor the expected positive correlation between mcy operon gene expression
and temperature, it is possible other conditions maintained during the study were not conducive to toxin production. For
example, while the specific conditions that induce microcystin production are still debated, high-cell density and nutrient
limitation are thought to be two important factors [52–55]. It is, therefore, conceivable that toxin production may have been
relatively low either due to the lower cell densities in culture (thereby preventing activation of potential mechanisms for
cell-density-dependent increased toxin production) or possible development of N limitation in month-old cultures (microcystin
is an N-rich compound). It is also possible that we did not find differences in mcyE expression among bacterial types due to
strain-by-strain variation within types, as others have found variation in microcystin production even between closely related
strains [35]. Therefore, our lack of evidence for an effect of bacterial type on mcyE expression may be due to the complexity of
mcy operon regulation.

There are several potential explanations for why oligotrophic types may be more thermotolerant. First, there is a precedence
for a connection between genome streamlining and thermotolerance. Streamlining is a strategy involving both cellular and
genome downsizing to allow more efficient use of sparse nutrients, with important ecological implications [56]. In thermophilic
bacteria, both the size of the genome and the percentage of intergenic regions were found to be negatively correlated with the
temperature at which the bacterial strain was found [57]. Similarly, we previously reported that LL/LG and HL/LG genomes
contained a higher percentage of coding versus non-coding DNA, and therefore we could infer from Sabath et al. that these
oligotrophic types might tolerate higher temperatures, as we do in fact find in the present study [5]. However, the authors
hypothesized that the correlation was due to indirect selection for genome streamlining, driven by direct selection for smaller
cell size at higher temperatures, as genome size is thought to constrain cell size. Yet, while we found multiple indicators of
genome streamlining in the LL/LG type of M. aeruginosa, we did not find evidence for reduced genome size [5]. Furthermore,
as Microcystis forms colonies that are frequently composed of 104−105 cells, the functional implications of cell size versus colony
size on temperature tolerance would need to be considered.

Another potential explanation for why oligotrophic types may be more thermotolerant is the co-occurrence of two nota-
ble selective pressures within cyanobacterial blooms. Late-stage blooms are typically characterized by both the depletion of
bioavailable nutrients and warmer temperatures [58]. Such blooms typically develop later into the summer when atmospheric
temperatures are higher [59,60]. Additionally, large cyanobacterial blooms are themselves heat traps, causing elevated local
surface water temperatures [13]. Therefore, the streamlining of oligotrophic types may provide a selective advantage when
exposed to two stressors that often occur simultaneously in late-stage blooms.

Last, an additional explanation for why oligotrophic types may be more thermotolerant stems from redundancy in cellular
stress responses. While organisms inhabiting warmer environments are well known to have higher temperature thresholds
for the induction of HSP expression, there is also evidence from a range of systems that populations adapted to extreme
environments characterized by conditions other than warm temperatures also have an increased basal level of HSPs [23]. This
can be explained by the fact that HSPs can be thought of as a more general response to stress overall [22,23]. For example,
increased sodium levels in soils, which can cause osmotic stress, have been found to induce HSP expression in grasses [61].
Further, there is evidence that caloric limitation in eukaryotes can increase HSP responses [62]. Similarly, comparative work of

9

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 292: 20242520



two species within the unicellular green algal genus Chlamydomonas found that Chlamydomonas acidophila, which is adapted to
acidic environments, exhibited significantly higher levels of HSPs under control conditions compared with the more generalist
Chlamydomonas reinhardtii [63]. Overall, it is conceivable that by evolving to a nutrient-limited environment, the LL/LG type may
be more fine-tuned to respond to multiple types of stress or may be primed with higher constitutive levels of HSPs. A potential
complication to this interpretation is genome streamlining within the LL/LG type, which may affect the number and expression
of HSP family genes. Streamlined bacteria tend to have fewer sigma factors, which initiate transcription, and so could include
a loss of sigma factors targeting HSPs and complex control of HSP expression. Ultimately, further research may elucidate what
effects genome streamlining in bacteria may have on the regulation of HSPs. Nevertheless, the consistent growth rates that
we observed in the LL/LG type across temperatures may be due to elevated constitutive levels of HSPs that are sufficient to
mitigate any effects of temperature in laboratory cultures.

There are several important limitations to our study. First, our strains were not axenic (i.e. not free of heterotrophic bacteria)
and so it is conceivable some results may differ with variation in the composition of the M. aeruginosa microbiome. It is
also possible that some of the between strain variation we observe within bacterial types is due to differences in microbiome
compositions between the strains. For example, our recent work found that M. aeruginosa has greater fitness and competitive
ability when xenic [64]. Furthermore, we recently found that heterotrophic bacteria inhabiting the microbiome of oligotrophic
types of M. aeruginosa share many of the same indicators of genome streamlining and features that facilitate survival in
nutrient-depleted environments as had been found in their cyanobacterial hosts [26]. Therefore, differences in thermotolerance
may also exist between the microbiomes of our M. aeruginosa types. Further, the complexity of natural systems is also expected
to affect HSP expression. For example, heat shock response has been shown to be affected by light in some cyanobacteria [65].
Nevertheless, with increasing temperatures being the key feature of anthropogenic climate change, our results, which show
responses to increased temperature with all other factors kept constant, should still provide valuable insight for predicting
the effects of climate change on Microcystis and harmful bloom dynamics. Further, while not all inland waters are expected to
reach the highest temperature tested in our study (32°C), one of the largest and deepest Microcystis-source lakes used in our
study, oligotrophic Gull Lake (MI, USA), reached a 24 h epilimnetic mean temperature of 30°C as far back as 2012 [34]. Shallow
eutrophic lakes, where Microcystis is more commonly found, have less thermal inertia and are likely to more readily achieve
these extreme temperatures in the near future. Given the global distribution of Microcystis, these experimental temperatures are
also highly applicable to subtropical and tropical environments. Finally, we note that a limitation to our study and classification
system is the large variation that still exists between strains within bacterial types and our single biological replicate per strain
per temperature condition. While these three types are well supported by genomic analysis in our previously published work,
as well as the trait data in this study that shows significant clustering by bacterial type, future research should further consider
and attempt to explain this intratype variability. For example, an expanded study with biological replication within strain could
further clarify strain-by strain variation in temperature tolerance within bacterial types.

In conclusion, our results show that strains adapted to oligotrophy are better equipped to persist during warming scenarios,
with higher or unchanged growth rates when comparing low to high temperature conditions. In contrast, strains adapted
to eutrophic conditions tend to have lower persistence at higher temperatures. We fortify these results with gene expression
data showing that different types of M. aeruginosa have differing patterns of expression of HSP genes in response to increased
temperatures. Given previous research suggesting that oligotrophic strains are more likely to produce microcystin, a dangerous
toxin, our results suggests that climate warming may select for the formation of cyanobacterial blooms with enhanced capacity
to both produce the microcystin toxin and tolerate nutrient limitation. Therefore, intraspecific genetic diversity within M.
aeruginosa may be key in predicting the dynamic of freshwater harmful algal blooms under climate warming.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Metadata are archived in Dryad [66]. Sequences used for phylogenies are available at NCBI PQ666794-PQ666862.
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. M.C.M.K.: data curation, formal analysis, investigation, methodology, visualization, writing—original draft, writing—review
and editing; C.V.Q.: investigation; N.C.B.: investigation; W.D.: investigation; J.D.W.: conceptualization, data curation, formal analysis, funding
acquisition, investigation, methodology, resources, supervision, writing—review and editing; S.L.J.: conceptualization, data curation, formal
analysis, funding acquisition, investigation, methodology, resources, supervision, visualization, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This project was supported by funding from the National Institutes of Health NIGMS R35GM142938 to S. L. Jackrel and a UCSD
Starbucks Sustainability Solutions Research Scholarship to W. Ding.
Acknowledgements. We thank M. E. Jackrel, J. R. Dickey, A. Fabiani and T. Y. Broe for their constructive comments to improve this manuscript. We
thank R. W. Bilich, C. L. Shaw and M. A. Duffy for assistance with water collection. We thank E. Perez-Coronel for assistance with optimizing
the RNA extraction protocol, R. Y. Koch for assistance with RNA extractions, M. Fang for advice on qPCR experimental design and data
analysis, and C. S. Spiegel for advice on statistical analysis.

References
1. Crutsinger GM, Collins MD, Fordyce JA, Gompert Z, Nice CC, Sanders NJ. 2006 Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313,

966–968. (doi:10.1126/science.1128326)
2. Whitham TG et al. 2006 A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. Genet. 7, 510–523. (doi:10.1038/nrg1877)

10

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 292: 20242520

http://dx.doi.org/10.1126/science.1128326
http://dx.doi.org/10.1038/nrg1877


3. Schopf JW. 2012 The fossil record of Cyanobacteria. In Ecology of Cyanobacteria II: their diversity in space and time (ed. BA Whitton), pp. 15–36. Dordrecht, The Netherlands: Springer.
(doi:10.1007/978-94-007-3855-3_2)

4. Whitton BA. 2012 Ecology of Cyanobacteria II: their diversity in space and time. Dordrecht, The Netherlands: Springer.
5. Jackrel SL, White JD, Evans JT, Buffin K, Hayden K, Sarnelle O, Denef VJ. 2019 Genome evolution and host‐microbiome shifts correspond with intraspecific niche divergence within

harmful algal bloom‐forming Microcystis aeruginosa. Mol. Ecol. 28, 3994–4011. (doi:10.1111/mec.15198)
6. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018 Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483. (doi:10.1038/s41579-018-0040-1)
7. Hamilton DP, Wood SA, Dietrich DR, Puddick J. 2014 Costs of harmful blooms of freshwater cyanobacteria. In Cyanobacteria, pp. 245–256. John Wiley & Sons,Ltd. (doi:10.1002/

9781118402238)
8. Paerl HW, Huisman J. 2009 Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37. (doi:10.1111/j.1758-2229.2008.

00004.x)
9. Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM. 2008 Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Chang. Biol. 14, 495–512. (doi:10.

1111/j.1365-2486.2007.01510.x)
10. Coles JF, Jones RC. 2000 Effect of temperature on photosynthesis‐light response and growth of four phytoplankton species isolated from a tidal freshwater river. J. Phycol. 36, 7–16.

(doi:10.1046/j.1529-8817.2000.98219.x)
11. Robarts RD, Zohary T. 1987 Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. N. Z. J. Mar. Freshw. Res. 21, 391–399.

(doi:10.1080/00288330.1987.9516235)
12. Hense I. 2007 Regulative feedback mechanisms in cyanobacteria-driven systems: a model study. Mar. Ecol. Prog. Ser. 339, 41–47. (doi:10.3354/meps339041)
13. Kahru M, Leppanen JM, Rud O. 1993 Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol. Prog. Ser. 101, 1–7. (doi:10.3354/meps101001)
14. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW. 2016 A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium,

Microcystis spp. Harmful Algae 54, 4–20. (doi:10.1016/j.hal.2015.12.007)
15. Masango MG, Myburgh JG, Labuschagne L, Govender D, Bengis RG, Naicker D. 2010 Assessment of Microcystis bloom toxicity associated with wildlife mortality in the Kruger

National Park, South Africa. J. Wildl. Dis. 46, 95–102. (doi:10.7589/0090-3558-46.1.95)
16. Steffen MM et al. 2017 Ecophysiological examination of the Lake Erie Microcystis bloom in 2014: linkages between biology and the water supply shutdown of Toledo, OH. Environ.

Sci. Technol. 51, 6745–6755. (doi:10.1021/acs.est.7b00856)
17. Qin B, Zhu G, Gao G, Zhang Y, Li W, Paerl HW, Carmichael WW. 2010 A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environ.

Manag. 45, 105–112. (doi:10.1007/s00267-009-9393-6)
18. Wetzel RG. 2001 Limnology: lake and river ecosystems. San Diego, CA: Academic Press.
19. Scavia D et al. 2014 Assessing and addressing the re-eutrophication of Lake Erie: central basin hypoxia. J. Gt. Lakes Res. 40, 226–246.
20. Parsell DA, Lindquist S. 1993 The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496. (doi:10.

1146/annurev.ge.27.120193.002253)
21. Hartl FU, Bracher A, Hayer-Hartl M. 2011 Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332. (doi:10.1038/nature10317)
22. Lindquist S. 1986 The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191. (doi:10.1146/annurev.bi.55.070186.005443)
23. Feder ME, Hofmann GE. 1999 Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282. (doi:10.

1146/annurev.physiol.61.1.243)
24. White JD, Kaul RB, Knoll LB, Wilson AE, Sarnelle O. 2011 Large variation in vulnerability to grazing within a population of the colonial phytoplankter, Microcystis aeruginosa. Limnol.

Oceanogr. 56, 1714–1724. (doi:10.4319/lo.2011.56.5.1714)
25. Stemberger RS. 1981 A general approach to the culture of planktonic rotifers. Can. J. Fish. Aquat. Sci. 38, 721–724. (doi:10.1139/f81-095)
26. Jackrel SL, White JD, Perez-Coronel E, Koch RY. 2023 Selection for oligotrophy among bacteria inhabiting host microbiomes. mBio 14, e0141523. (doi:10.1128/mbio.01415-23)
27. Fortunato CS, Huber JA. 2016 Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME J. 10, 1925–1938.

(doi:10.1038/ismej.2015.258)
28. Rhee JS, Ki JS, Kim BM, Hwang SJ, Choi IY, Lee JS. 2012 HspA and HtpG enhance thermotolerance in the cyanobacterium, Microcystis aeruginosa NIES-298. J. Microbiol. Biotechnol.

22, 118–125. (doi:10.4014/jmb.1108.08001)
29. Jungblut AD, Neilan BA. 2006 Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of

Cyanobacteria. Arch. Microbiol. 185, 107–114. (doi:10.1007/s00203-005-0073-5)
30. Lu J, Struewing I, Wymer L, Tettenhorst DR, Shoemaker J, Allen J. 2020 Use of qPCR and RT-qPCR for monitoring variations of microcystin producers and as an early warning system

to predict toxin production in an Ohio inland lake. Water Res. 170, 115262. (doi:10.1016/j.watres.2019.115262)
31. Pacheco A, Guedes I, Azevedo S. 2016 Is qPCR a reliable indicator of cyanotoxin risk in freshwater? Toxins 8, 172. (doi:10.3390/toxins8060172)
32. Cao H, Xu D, Zhang T, Ren Q, Xiang L, Ning C, Zhang Y, Gao R. 2022 Comprehensive and functional analyses reveal the genomic diversity and potential toxicity of Microcystis. Harmful

Algae 113, 102186. (doi:10.1016/j.hal.2022.102186)
33. Humbert JF et al. 2013 A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747. (doi:10.1371/journal.

pone.0070747)
34. White JD, Sarnelle O, Hamilton SK. 2017 Unexpected population response to increasing temperature in the context of a strong species interaction. Ecol. Appl. 27, 1657–1665. (doi:

10.1002/eap.1558)
35. Berry MA, White JD, Davis TW, Jain S, Johengen TH, Dick GJ, Sarnelle O, Denef VJ. 2017 Are oligotypes meaningful ecological and phylogenetic units? A case study of Microcystis in

freshwater lakes. Front. Microbiol. 08, 365. (doi:10.3389/fmicb.2017.00365)
36. Buley RP, Gladfelter MF, Fernandez-Figueroa EG, Wilson AE. 2022 Can correlational analyses help determine the drivers of microcystin occurrence in freshwater ecosystems? A meta-

analysis of microcystin and associated water quality parameters. Environ. Monit. Assess. 194, 493. (doi:10.1007/s10661-022-10114-8)
37. Heathcote AJ, Taranu ZE, Tromas N, MacIntyre‐Newell M, Leavitt PR, Pick FR. 2023 Sedimentary DNA and pigments show increasing abundance and toxicity of cyanoHABs during the

Anthropocene. Freshw. Biol. 68, 1859–1874. (doi:10.1111/fwb.14069)
38. Biller SJ, Berube PM, Lindell D, Chisholm SW. 2015 Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27. (doi:10.1038/nrmicro3378)
39. Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK, Han BP, Song LR, Shu WS. 2021 Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15,

211–227. (doi:10.1038/s41396-020-00775-z)

11

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 292: 20242520

http://dx.doi.org/10.1007/978-94-007-3855-3_2
http://dx.doi.org/10.1111/mec.15198
http://dx.doi.org/10.1038/s41579-018-0040-1
http://dx.doi.org/10.1002/9781118402238
http://dx.doi.org/10.1002/9781118402238
http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1758-2229.2008.00004.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01510.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01510.x
http://dx.doi.org/10.1046/j.1529-8817.2000.98219.x
http://dx.doi.org/10.1080/00288330.1987.9516235
http://dx.doi.org/10.3354/meps339041
http://dx.doi.org/10.3354/meps101001
http://dx.doi.org/10.1016/j.hal.2015.12.007
http://dx.doi.org/10.7589/0090-3558-46.1.95
http://dx.doi.org/10.1021/acs.est.7b00856
http://dx.doi.org/10.1007/s00267-009-9393-6
http://dx.doi.org/10.1146/annurev.ge.27.120193.002253
http://dx.doi.org/10.1146/annurev.ge.27.120193.002253
http://dx.doi.org/10.1038/nature10317
http://dx.doi.org/10.1146/annurev.bi.55.070186.005443
http://dx.doi.org/10.1146/annurev.physiol.61.1.243
http://dx.doi.org/10.1146/annurev.physiol.61.1.243
http://dx.doi.org/10.4319/lo.2011.56.5.1714
http://dx.doi.org/10.1139/f81-095
http://dx.doi.org/10.1128/mbio.01415-23
http://dx.doi.org/10.1038/ismej.2015.258
http://dx.doi.org/10.4014/jmb.1108.08001
http://dx.doi.org/10.1007/s00203-005-0073-5
http://dx.doi.org/10.1016/j.watres.2019.115262
http://dx.doi.org/10.3390/toxins8060172
http://dx.doi.org/10.1016/j.hal.2022.102186
http://dx.doi.org/10.1371/journal.pone.0070747
http://dx.doi.org/10.1371/journal.pone.0070747
http://dx.doi.org/10.1002/eap.1558
http://dx.doi.org/10.3389/fmicb.2017.00365
http://dx.doi.org/10.1007/s10661-022-10114-8
http://dx.doi.org/10.1111/fwb.14069
http://dx.doi.org/10.1038/nrmicro3378
http://dx.doi.org/10.1038/s41396-020-00775-z


40. Larkin AA, Blinebry SK, Howes C, Lin Y, Loftus SE, Schmaus CA, Zinser ER, Johnson ZI. 2016 Niche partitioning and biogeography of high light adapted Prochlorococcus across
taxonomic ranks in the North Pacific. ISME J. 10, 1555–1567. (doi:10.1038/ismej.2015.244)

41. Ustick LJ, Larkin AA, Martiny AC. 2023 Global scale phylogeography of functional traits and microdiversity in Prochlorococcus. ISME J. 17, 1671–1679. (doi:10.1038/s41396-023-
01469-y)

42. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, Lacerot G, De Meester L, Vyverman W. 2011 Lack of phylogeographic structure in the
freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6, e19561. (doi:10.1371/journal.pone.0019561)

43. Moreira C, Spillane C, Fathalli A, Vasconcelos V, Antunes A. 2014 African origin and Europe-mediated global dispersal of the cyanobacterium Microcystis aeruginosa. Curr. Microbiol.
69, 628–633. (doi:10.1007/s00284-014-0628-2)

44. Shirani S, Hellweger FL. 2017 Neutral evolution and dispersal limitation produce biogeographic patterns in Microcystis aeruginosa populations of lake systems. Microb. Ecol. 74, 416–
426. (doi:10.1007/s00248-017-0963-5)

45. Sharma NK, Singh S. 2010 Differential aerosolization of algal and cyanobacterial particles in the atmosphere. Indian J. Microbiol. 50, 468–473. (doi:10.1007/s12088-011-0146-x)
46. Lewandowska AU, Śliwińska-Wilczewska S, Woźniczka D. 2017 Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the southern Baltic Sea. Mar.

Pollut. Bull. 125, 30–38. (doi:10.1016/j.marpolbul.2017.07.064)
47. Doblin MA, Coyne KJ, Rinta-Kanto JM, Wilhelm SW, Dobbs FC. 2007 Dynamics and short-term survival of toxic cyanobacteria species in ballast water from NOBOB vessels transiting

the Great Lakes—implications for HAB invasions. Harmful Algae 6, 519–530. (doi:10.1016/j.hal.2006.05.007)
48. Curren E, Leong SCY. 2020 Natural and anthropogenic dispersal of cyanobacteria: a review. Hydrobiologia 847, 2801–2822. (doi:10.1007/s10750-020-04286-y)
49. Basha E, O’Neill H, Vierling E. 2012 Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem. Sci. 37, 106–117. (doi:10.1016/j.tibs.2011.

11.005)
50. Srivastava AK, Rai AN, Neilan BA. 2013 Stress biology of cyanobacteria: molecular mechanisms to cellular responses. Boca Raton, FL: CRC Press.
51. Klaips CL, Jayaraj GG, Hartl FU. 2018 Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 217, 51–63. (doi:10.1083/jcb.201709072)
52. Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD. 2014 Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res.

54, 188–198. (doi:10.1016/j.watres.2014.01.063)
53. Pimentel JSM, Giani A. 2014 Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl. Environ. Microbiol. 80, 5836–5843. (doi:10.

1128/aem.01009-14)
54. Wang S, Ding P, Lu S, Wu P, Wei X, Huang R, Kai T. 2021 Cell density-dependent regulation of microcystin synthetase genes (mcy) expression and microcystin-LR production in

Microcystis aeruginosa that mimics quorum sensing. Ecotoxicol. Environ. Saf. 220, 112330. (doi:10.1016/j.ecoenv.2021.112330)
55. Wood SA, Puddick J, Hawes I, Steiner K, Dietrich DR, Hamilton DP. 2021 Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS One 16, e0254967. (doi:

10.1371/journal.pone.0254967)
56. Giovannoni SJ, Cameron Thrash J, Temperton B. 2014 Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565. (doi:10.1038/ismej.2014.60)
57. Sabath N, Ferrada E, Barve A, Wagner A. 2013 Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal

adaptation. Genome Biol. Evol. 5, 966–977. (doi:10.1093/gbe/evt050)
58. Sarnelle O. 1992 Contrasting effects of Daphnia on ratios of nitrogen to phosphorus in a eutrophic, hard‐water lake. Limnol. Oceanogr. 37, 1527–1542. (doi:10.4319/lo.1992.37.7.

1527)
59. Sommer U. 1989 The role of competition for resources in phytoplankton succession. In In plankton ecology: succession in plankton communities (ed. U Sommer), pp. 57–106. Berlin,

Germany: Springer. (doi:10.1007/978-3-642-74890-5_3)
60. De Senerpont Domis LN, Mooij WM, Huisman J. 2007 Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. In Shallow lakes in a changing

world (eds RD Gulati, E Lammens, N De Pauw, E Van Dock), pp. 403–413. Dordrecht, The Netherlands: Springer. (doi:10.1007/978-1-4020-6399-2_36)
61. Hamilton EW III, McNaughton SJ, Coleman JS. 2001 Molecular, physiological, and growth responses to sodium stress in C 4 grasses from a soil salinity gradient in the Serengeti

ecosystem. Am. J. Bot. 88, 1258–1265. (doi:10.2307/3558337)
62. Moura C, Lollo P, Morato P, Amaya-Farfan J. 2018 Dietary nutrients and bioactive substances modulate heat shock protein (HSP) expression: a review. Nutrients 10, 683. (doi:10.

3390/nu10060683)
63. Gerloff-Elias A, Barua D, MÃ¶lich A, Spijkerman E. 2006 Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas

acidophila. FEMS Microbiol. Ecol. 56, 345–354. (doi:10.1111/j.1574-6941.2006.00078.x)
64. Schmidt KC, Jackrel SL, Smith DJ, Dick GJ, Denef VJ. 2020 Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.

Harmful Algae 99, 101939. (doi:10.1016/j.hal.2020.101939)
65. Asadulghani Suzuki Y, Nakamoto H. 2003 Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803. Biochem. Biophys. Res.

Commun. 306, 872–879. (doi:10.1016/s0006-291x(03)01085-4)
66. Jackrel S, Kuijpers M. 2024 Data from: Intraspecific divergence within Microcystis aeruginosa mediates the dynamics of freshwater harmful algal blooms under climate warming

scenarios. Dryad Digital Repository. ()

12

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 292: 20242520

http://dx.doi.org/10.1038/ismej.2015.244
http://dx.doi.org/10.1038/s41396-023-01469-y
http://dx.doi.org/10.1038/s41396-023-01469-y
http://dx.doi.org/10.1371/journal.pone.0019561
http://dx.doi.org/10.1007/s00284-014-0628-2
http://dx.doi.org/10.1007/s00248-017-0963-5
http://dx.doi.org/10.1007/s12088-011-0146-x
http://dx.doi.org/10.1016/j.marpolbul.2017.07.064
http://dx.doi.org/10.1016/j.hal.2006.05.007
http://dx.doi.org/10.1007/s10750-020-04286-y
http://dx.doi.org/10.1016/j.tibs.2011.11.005
http://dx.doi.org/10.1016/j.tibs.2011.11.005
http://dx.doi.org/10.1083/jcb.201709072
http://dx.doi.org/10.1016/j.watres.2014.01.063
http://dx.doi.org/10.1128/aem.01009-14
http://dx.doi.org/10.1128/aem.01009-14
http://dx.doi.org/10.1016/j.ecoenv.2021.112330
http://dx.doi.org/10.1371/journal.pone.0254967
http://dx.doi.org/10.1038/ismej.2014.60
http://dx.doi.org/10.1093/gbe/evt050
http://dx.doi.org/10.4319/lo.1992.37.7.1527
http://dx.doi.org/10.4319/lo.1992.37.7.1527
http://dx.doi.org/10.1007/978-3-642-74890-5_3
http://dx.doi.org/10.1007/978-1-4020-6399-2_36
http://dx.doi.org/10.2307/3558337
http://dx.doi.org/10.3390/nu10060683
http://dx.doi.org/10.3390/nu10060683
http://dx.doi.org/10.1111/j.1574-6941.2006.00078.x
http://dx.doi.org/10.1016/j.hal.2020.101939
http://dx.doi.org/10.1016/s0006-291x(03)01085-4


Supplementary Information 
 

Intraspecific divergence within Microcystis aeruginosa mediates the dynamics of 
freshwater harmful algal blooms under climate warming scenarios 

 
Mirte C. M. Kuijpers1, Catherine V. Quigley2, Nicole C. Bray2, Wenbo Ding1, Jeffrey D. 

White2, Sara L. Jackrel1* 

 

 1 Department of Ecology, Behavior and Evolution, School of Biological Sciences, University 
of California San Diego, La Jolla, California, USA 
2 Department of Biology, Framingham State University, Framingham, Massachusetts, USA 
*Corresponding author: sjackrel@ucsd.edu  
 

Proceedings of the Royal Society B 
DOI: 10.1098/rspb.2024.2520 

 

Supplementary Methods 
 
Gene count analysis 
As tolerance to heat stress can be the consequence of both variation in gene copy number and 
expression, we first surveyed whether the three bacterial types of M. aeruginosa varied in 
copy number for genes associated with heat shock proteins. Forty-six metagenome-assembled 
genomes including 18 LL/LG, 11 HL/LG and 17 HL/HG MAGs, as described in our prior 
work, were annotated using the Joint Genome Institutes Genomes OnLine Database (JGI 
GOLD) following standard pipelines[1,2]. We used keyword searches in JGI GOLD to survey 
the frequency of twenty genes associated with the synthesis of common heat shock proteins, 
including the HSP and Clp proteins.    
 
Strain Genotyping and Phylogenetics 

We previously identified the three types of M. aeruginosa used in this study using a 
multi-locus sequence typing (MLST) analysis of five marker genes[3,4]. While accurate, this 
method requires a substantial sequencing effort that reduces its scalability. We therefore 
aimed to determine whether the rRNA-ITS region, which has been shown to provide high 
resolution strain discrimination for M. aeruginosa, could be used as an inexpensive and 
scalable alternative to accurately distinguish between high- and low-nutrient bacterial types. 
This method has successfully been used for distinguishing clades and ecotypes in the 
cyanobacterium Prochlorococcus, which also has distinct bacterial types delimited by various 
environmental/niche adaptations[5,6]. As opposed to our MLST analysis, which required ~ 
nine kilobases, an ITSc analysis requires less than 500 base pairs. To test whether the rRNA-
ITSc and MLST methods are comparable in accuracy, we used our previously published 
shotgun metagenomic dataset of 46 strains of M. aeruginosa originating from inland lakes of 
Michigan to construct a phylogeny using both methods. Each of the five house-keeping genes 
for each strain had previously been located within this metagenomic dataset as described in[2]. 
To locate the rRNA-ITSc region for each strain in the dataset, we used a representative 
sequence of the M. aeruginosa rRNA-ITSc to search for and extract gene orthologs by 
making custom blast databases and using the blastdbcmd command to extract sequence 
ranges based on blast output coordinates. As we found high accuracy of the rRNA-ITSc 
method to distinguish between the high and low-nutrient bacterial types, described in detail in 
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supplementary results and Fig. S1, we proceeded with this approach for each of the strains 
that we isolated in 2019. We amplified the rRNA-ITSc region of M. aeruginosa biomass via 
colony PCR using the CSIF and ULR primers as described in Janse et al. 2003. All colony 
PCR reactions and Sanger sequencing were completed in 2020 for each of our 24 recently 
isolated M. aeruginosa strains through Azenta Life Sciences (South Plainfield, NJ).   

To construct phylogenies, we compiled extracted gene sequences that we obtained 
from our previously published shotgun metagenomic dataset (46 strains) with the Sanger 
sequences that we obtained for our 24 newly isolated strains of M. aeruginosa, aligned 
sequences with MUSCLE using default parameters and trimmed alignments using Geneious. 
Consensus sequences and alignments were reviewed manually to ensure accuracy and final 
alignment lengths were 490, 8954, and 518 base pairs for the phylogenies reported in Fig 1 
using the ITSc method, Fig S1A using the MLST method and Fig S1B using the ITSc 
method, respectively. We constructed phylogenies using RAxML version 8.2.12 with an 
outgroup of Synechococcus strain NC 006576 obtained from NCBI, and a GTRGAMMA 
evolutionary model with bootstrap analyses of 10,000 repetitions to search for the best-
scoring maximum likelihood tree. All phylogenetic trees were illustrated using ggTree[7]. 
Strains isolated in this study were assigned their bacterial type based on the strain’s position 
within the phylogenetic tree (shown in Fig 1) and the TP of the lake from which each strain 
was isolated. We used standard thresholds in TP for assigning trophic state with an 
oligotrophic-mesotrophic boundary of 10 µg/L and a mesotrophic-eutrophic boundary of 30 
µg/L[8]. We note that the oligotrophic lakes in our study have appreciable densities of 
Microcystis due to the introduction of invasive dreissenid mussels[9,10]. 

 
Gene expression analysis 
RNA was obtained via phenol-chloroform extraction with the Invitrogen mirVana™ miRNA 
Isolation Kit using a protocol modified by Fortunato and Huber (Fortunato & Huber, 2016). 
In brief, we added half of a 23 mm filter containing the algal biomass into MP Biomedicals™ 
Lysing Matrix E 2 mL tubes with 750 μl of Lysis/Binding Buffer from the mirVana™ 
miRNA Isolation Kit. We vortexed tubes for 10 min, added 10 μl of miRNA Homogenate 
Additive, incubated for 10 minutes on ice, and centrifuged at 4,000 g for 2 minutes at 4°C. 
We transferred lysates to clean 1.5 ml tubes and repeated centrifugation to transfer any 
remaining lysate to the same 1.5 ml tube. We added 1-part acid-phenol chloroform to sample 
lysate to each tube, inverted a few times, and centrifuged for 5 minutes at 10,000 g. We 
removed the top aqueous layer, transferred to a new 1.5 ml tube, and from this point onwards 
followed the Total RNA isolation Procedure published for the mirVana™ miRNA Isolation 
Kit without any further modifications. Final RNA concentrations were measured with an 
Invitrogen Qubit 4 Fluorometer. We note that we were unable to successfully extract RNA 
from all samples, despite multiple attempts, likely due to some populations experiencing 
major decline during the warming trials, leading to low collected biomass for these 
populations. 

cDNA was synthesized from the extracted RNA using the SuperScript III First-Strand 
Synthesis System with random hexamer primers, 8 μL RNA per reaction and 4 reactions 
pooled per sample. We followed the default procedure in all aspects, except in adding 4x the 
volume of all components, including the RNA input, for each sample such that the default 
ratio of each component to each other component and the sample was maintained throughout 
the protocol. This yielded 4x the final product, which was required to allow qPCR with 
multiple primers, each with their own technical replicates. The final product cDNA was 
either stored at -20°C or was used immediately for qPCR. 

When quantifying gene expression using qPCR, each sample had reactions for all 14 
primers and two sets of negative controls simultaneously run in the same plate with a 
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minimum of four technical replicates per primer. To ensure our expression results were 
primarily indicative of the host and not associated heterotrophic bacteria, we verified that all 
primers matched predominantly to Microcystis spp. using NCBI Primer-Blast against the nr 
nucleotide database. We followed the default 10 μL reaction volume PowerTrack™ 
SYBR™Green Master Mix protocol of 1 μL sample cDNA, 5 μL master mix, 0.5 μL of 
forward and reverse primers each, and 3.25 μL nuclease-free water without the addition of 
the optional Yellow Sample Buffer. We replaced sample cDNA with distilled nuclease-free 
water for our negative controls. Each plate always contained one set of negative controls with 
our reference primer set (rpoA forward and reverse) and another set of negative controls with 
a different primer set from our other 13 primer sets. Plates were run on a CFX96TM-
RealTimeSystem-C1000-TouchTM Thermal Cycler with the PowerTrack ‘fast’ program: 
95°C for 2 min, followed by 40 cycles of 15s at 95°C and 60s at 60°C, followed by the ‘fast’ 
dissociation step program to create a melting curve from the PowerTrack protocol. Raw data 
was processed using the CFX MaestroTM software to determine Ct values via linear 
regression. 

Differential gene expression was determined using the 2-ΔΔCt method[11], with 20°C as 
the baseline control treatment and rpoA as the reference gene. To calculate this 2-ΔΔCt metric, 
all NAs were set to 40, the maximum CT possible in our runs. For two HL/HG strains, FA19-
02 and F19-02, and one LL/LG strain, G19-02, we were unable to successfully extract RNA 
for the 20°C condition. Therefore, we used an average of the CT value for each target at the 
20°C conditions for all the other strains of the matching bacterial type as a replacement for 
the CT value for each target for the FA19-02, F19-02 and G19-02 strains at 20°C. 
Efficiencies were assessed by a visual comparison, with all sharing a similar shape and their 
slopes approximately parallel. Additionally, we restrict all statistical comparisons to within a 
single gene target, so any variation across gene targets in the efficiency of reverse 
transcription or qPCR should not bias our reported results. 

 
 Statistics 
 Growth rates of M. aeruginosa cultures were determined as the slope of the linear 
regression of ln-transformed chlorophyll-a versus time and then boxcox transformed to 
improve normality for the linear models. We first determined whether growth rates for the 
first week (exponential phase) of growth were dependent on bacterial type and temperature 
using a linear mixed effects model with type, temperature, and their interaction as fixed 
effects and strain as a random effects term. We then determined whether growth rates over 
the course of the full four-week incubation were dependent on bacterial type and temperature 
using a linear mixed effects model with type, temperature, and their interaction as fixed 
effects and growth time point nested within strain as a random effects term. We also repeated 
this analysis with growth time point as a fixed effect. For the full four-week model we also 
utilized Tukey post-hoc comparisons.  
 In addition, we evaluated growth rates of each bacterial type in response to 
temperature using hierarchical general additive models as outlined in Pedersen et al. 2019[12]. 
This modeling framework does not have an assumption of linearity. We used a Gaussian 
error distribution using the mgcv package[13] for both the exponential phase and full four-
week dataset. Briefly, for each dataset we built a baseline model G which contained only a 
global trendline for the effect of temperature on growth rate across all strains; a model GS 
that allowed variation from that global trend in shape but not smoothness for each M. 
aeruginosa type; a model GI which also allowed variation in smoothness from the global 
trend for each type; a model S that allowed a different response curve with similar 
smoothness for each type and had no global trendline to constrain type-specific curve shapes 
to; and a model I that allowed a different response curve for each type in terms of both shape 



and smoothness with no global trendline to constrain either. We then performed AIC based 
model selection, with the selection criteria for each successive model to be at least 2 AIC 
points lower in score than the next most conservative model previously accepted, where 
model conservativeness G > GS > GI > S > I (see Table S2). In summary, for a model other 
than G to be selected it was required to have an AIC at least 2 points lower than G, and every 
other model more conservative than it that was accepted in a previous step of model 
selection. We report the results of the best model for exponential phase, the four-week study 
with phase as a random effect, and the four-week study with phase as a fixed factor, to 
confirm that our results were not dependent on the assumption of a linear response of growth 
rate to temperature. 

Finally, we determined whether population persistence over the course of the study 
was dependent on type and temperature using a cumulative link mixed effects model (clmm), 
which is designed for ordinal response variables. We defined population persistence as those 
cultures displaying a positive growth rate, whereas a ‘non-persisting’ declining population 
displayed a negative growth rate. Consistent with the structure of our linear mixed effects 
model used for growth rates, our clmm for population persistence used type, temperature, and 
their interaction as fixed effects and growth time point and strain as random effects. We also 
evaluated each M. aeruginosa type independently using linear mixed effects models with 
temperature as a fixed effect and strain as a random effects term.  

Next, we analyzed whether gene expression of heat shock proteins was significantly 
different between bacterial types and/or significantly affected by the temperature treatments. 
We used a boxcox transformation to improve normality for our measure of relative gene 
expression (2–∆∆Ct)[14]. We first determined whether relative gene expression was dependent 
on type and temperature using a linear mixed effects model with type, temperature and their 
interactions as fixed effects and gene target nested within strain as a random effect term. We 
then used the same model framework to test each gene target individually. All models were 
created using the lme, gam and clmm functions from the nmle, mgcv and ordinal packages in 
R[13,15-18]. Tukey post-hoc comparisons were completed using the emmeans package in R[19]. 
Finally, to test whether the strains within bacterial types showed similar patterns across both 
growth and expression dynamics (for all temperatures except the baseline 20°C to allow 
calculation of relative gene expression), we used a MANOVA followed by a Linear 
Determinants Analysis[20]. All figures were made with the ggplot2 package, with the 
exception of the phylogenies and maps, which were made with ggTree and qGIS with the 
Natural Earths dataset, respectively[7,21,22]. To aid in visualization of our qPCR data, we used 
the coord_cartesian function within ggplot2 to center the boxplots without affecting data 
distributions.  



Supplementary Results 
We found that our newly constructed phylogeny from rRNA-ITSc sequences recapitulates the 
patterns of high-nutrient versus low-nutrient bacterial types that we had previously identified 
in our original phylogeny constructed using a multi-locus sequence typing analysis (MLST) 
with five marker genes (Fig. S1). Specifically, the identical strains were grouped into the high 
versus low types irrespective of using the rRNA-ITSc or MLST method, with similar 
confidence levels for the node separating these two groups (Fig. S1, bootstrapping value of 
85% for MLST versus 72% for ITSc method). While the ITSc approach alone could not 
distinguish between the LL/LG and HL/LG types, categorization could still be completed 
accurately by using phylogenetic positioning to determine low versus high genotype 
combined with trophic status of the lake of origin to determine low versus high nutrient lake 
(Table S1).    



Supplementary Figures 

 

Fig S1. Similar phylogenetic structure of the three bacterial types of M. aeruginosa originally 
described in Jackrel et al. 2019 using a multi-locus sequence typing analysis can be obtained 
from using the rRNA-ITSc region. Phylogeny includes 46 isolates of M. aeruginosa collected 
from 14 inland lakes of Michigan, USA, as well as the cyanobacterium Synechococcus as an 
outgroup comparison. A) Multi-locus sequence typing analysis reproduced from Jackrel et al. 
2019 by constructing a phylogeny with RAxML based on five housekeeping genes (ftsZ, 
glnA, gltX, gyrB and pgi). B) Phylogeny based only on the rRNA-ITSc region, as described 
by Janse et al. 2003, extracted from shotgun metagenomic sequences of isolates. The three 
bacterial types of M. aeruginosa are depicted as those originating from oligotrophic lakes in 
dark blue, i.e. the LL/LG type; those originating from eutrophic and mesotrophic lakes that 
clustered with oligotrophic lakes, i.e. the HL/LG type in light-blue; and all other isolates 
originating from eutrophic and mesotrophic lakes, i.e. the HL/HG type in green.    



 

Figure S2. Geographic placement of the lakes from which the M. aeruginosa strains were 
isolated for both the new isolates and previously collected M. aeruginosa strain datasets. 
Lake symbols are colored by average total Phosphorus (µg/L), see Table S1 for further details 
on these lakes. This figure was created with qGIS using data from the Natural Earth Data 
datasets. 



Table S1. Associated metadata for all strains of M. aeruginosa originating from lakes in 
midwestern and northeastern USA. Strains include those used only for the phylogenetic 
analyses as well as those used for the warming experiment. New isolate strains that were 
sequenced but not used in the phylogeny due to poor quality are in italics while new isolate 
strains that were both sequenced and used in the warming experiment are in bold.  

Lake/Location Latitude, 
Longitude 

Mean Total 
Phosphorus 
(TP) (μg/L) 

TP range 
(μg/L)  

# of TP 
measure-

ments 
Years Sampled 

Mean 
Chl-a 
(μg/L) 

Mean 
SRP 

(μg/L) 

Mean 
NH4 

(μg/L) 

Mean 
NOs 

(μg/L) 
Strains Isolated Genotype 

Isolated 

Ashland Reservoir, Middlesex Co., 
MA, USA 

42.244289, -
71.461792 13.6 8.2 - 20.2 23 2015-2019 5.4 4.9 49.9 57.8 AR19-01, AR19-02 HL/LG 

Baker Lake, Barry Co., 
MI, USA 

42.64643, -
85.50279 28.0 11.5 -54.6 4 2009, 2011, 2013 33.8 4.6 34.9 52.3 BK11-02 HL/LG 

Baseline Lake, Allegan Co., 
MI, USA 

42.42421, -
85.5677 36.1 24.7 - 48.0 6 1998-1999, 2009, 

2011, 2013 47.1 3.6 19.0 31.1 BS11-05, BS13-02, BS13-
10 

HL/LG, 
HL/HG 

Bruin Lake, Washtenaw Co., MI, 
USA 

42.418874, -
84.039033 5.83 3.9-6.79 10 2007, 2011-2015, 

2019 1.33 0.60 19.83 0.171 BU19-01, BU19-02, 
BU19-03, BU19-04 LL/LG 

Crooked Lake, Washtenaw Co., 
MI, USA 

42.324493, -
84.111899 6.5 1.0-10.0 4 2002, 2007, 2019 ND ND ND ND 

CR19-01, CR19-02, 
CR19-03, CR19-04, 
CR19-05, CR19-06 

LL/LG 

Farm Pond, Middlesex Co., 
MA, USA 

42.279281, -
71.422882 18.8 8.8-35.2 14 2015-2019 4.2 3.8 35.6 37.3 

FA19-01, FA19-02, FA19-
03, FA19-04, FA19-05, 

FA19-06 
HL/HG 

Ford Lake, Washtenaw Co., MI, 
USA 

42.20619, -
83.566 65.0 44.8 - 99.6 5 2009, 2011, 2013, 

2016, 2019 56.2 10.2 465.1 514.0 F19-01, F19-02, F19-03, 
F19-04, F13-15 HL/HG 

Gull Lake, Barry / Kalamazoo Co., 
MI, USA 

42.39651, -
85.40936 7.6 2.3-13.1 201 1998-2014 3.7 1.3 22.1 277.0 

G19-01, G19-02, G19-04, 
G11-01, G11-04, G11-06, 
G11-09, G13-01, G13-03, 
G13-05, G13-07, G13-09, 

G13-10, G13-12 

LL/LG 

Kent Lake, Oakland Co., 
MI, USA 

42.52346, -
83.66 23.6 15.2 - 31.5 3 2009, 2013 23.1 3.3 67.2 44.4 K13-05, K13-06, K13-07, 

K13-10 
HL/LG, 
HL/HG 

Lake Champlain- 
St. Albans Bay, Franklin Co., VT, 

USA 

44.804592, -
73.139215 33.3 14.5 -72.6 98 2015-2019 ND ND ND ND CH19-02, CH19-03 HL/LG 

Lake Lansing, Ingham Co., 
MI, USA 

42.76324, -
84.405 17.1 16.6 - 17.6 2 2011, 2013 5.5 5.1 11.1 89.0 

LG11-05, LG13-02, 
LG13-03, LG13-11, 

LG13-1 
HL/HG 

Lee Lake, Calhoun Co., 
MI, USA 

42.17991, -
85.11844 9.0 3.4 -13.2 5 2003, 2009, 2011, 

2013 4.0 1.9 5.3 40.4 LE13-04 LL/LG 

Little Long Lake, Barry Co., 
MI, USA 

42.41803, -
85.44348 8.0 3.2 - 13.4 42 2011 - 2014 4.1 1.0 100.0 312.5 LL11-07, LL13-03, LL13-

6 LL/LG 

MSU lake 1, Ingham Co., 
MI, USA 

42.68059, -
84.4831 163.5 71.0 - 209.9 3 2009, 2011, 2013 12.2 155.8 42.5 134.5 L111-01 HL/LG 

MSU lake 2, Ingham Co., 
MI, USA 

42.68059, -
84.4871 196.8 105.3 - 

456.2 79 2009-2013 240.8 7.3 6.8 157.6 L211-07, L211-01, L211-
11 HL/HG 

MSU lake 3, Ingham Co., 
MI, USA 

42.67928, -
84.4849 128.7 115.4 - 

153.0 3 2011, 2013 53.3 4.1 9.4 543.7 L311-01 HL/HG 

Sherman Lake, Kalamazoo Co., 
MI, USA 

42.35212, -
85.38545 13.7 4.8-24.0 4 2009, 2011, 2013 9.1 2.8 0.0 64.9 S11-01, S11-05 HL/LG 

Sixteen Lake, Allegan Co., 
MI, USA 

42.56518, -
85.61352 8.8 6.4 - 10.6 3 2009, 2013 5.0 1.0 127.5 1917.6 SX13-01, SX13-11 LL/LG 

South Meadow Pond, Worcester 
Co., 

MA, USA 

42.415042, -
71.709673 50.7 NA 1 2019 16.7 20.0 49.9 ND SM19-01, SM19-02, 

SM19-03, SM19-04 
HL/HG, 
HL/LG 

Whitmore Lake, Livingston 
County, MI, USA 

42.435690, -
83.748680 12.69 4.9 -16.58 5 2007, 2009, 2014, 

2019 4.38 0.34 2.44 0.165 
WH19-01, WH19-02, 
WH19-03, WH19-04, 

WH19-05 

HL/HG, 
HL/LG 

Wintergreen Lake, Kalamazoo 
Co., 

MI, USA 

42.39757, -
85.38536 47.8 26.2 - 92.1 4 2009, 2011, 2013 21.4 2.7 236.0 129.7 

W11-03, W11-06, W13-
11, W13-13, W13-15, 

W13-16, W13-18 

HL/LG, 
HL/HG 

            



Table S2. AIC scores for GAM selection for both the exponential phase only and full four-
week dataset models (for the latter both with and without Phase as a random effect). Model 
terminology (G, GS, GI, I and S) come from ref[12]. For each model selection procedure, the 
selected model is marked with a *. Model conservativeness, from highest to lowest is G > GS 
> GI > S > I. For exact model details please see the code provided in the supplementary 
materials package. 
 

Dataset Model Random 
effects df AIC 

ΔAIC from 
most 

conservative 
model (G) 

Exponential phase only G Strain 12 -61 0 

Exponential phase only GS* Strain 17 -70 9 

Exponential phase only GI Strain 18 -71 10 

Exponential phase only S Strain 15 -67 6 

Exponential phase only I Strain 19 -62 1 

Full four-weeks G Strain, Phase 13 -155 0 

Full four-weeks GS* Strain, Phase 10 -165 10 

Full four-weeks GI Strain, Phase 15 -153 +2  

Full four-weeks S Strain, Phase 10 -164 9 

Full four-weeks I Strain, Phase 16 -154 +1 

Full four-weeks G Strain 19 -150 0 

Full four-weeks GS Strain 17 -160 10 

Full four-weeks GI Strain 17 -151 1 

Full four-weeks S* Strain 13 -162 12 

Full four-weeks I Strain 18 -152 2 

  



 

Figure S3. Bacterial type significantly predicts the growth rates of M. aeruginosa. 
Alternative illustration of the data represented in Fig 3 and Fig S3. Note that Week 1 and 
exponential phase are synonymous. LME with week of study (= phase) as a fixed effect: type 
F2,16=6.42, p=0.009, η2p=0.45; temperature F3,267=2.73, p=0.045, η2p=0.03; phase 
F3,267=29.80, p<0.0001, η2p=0.25; type*temperature F6,267=1.23, p=0.289; type*phase 
F6,267=3.38, p=0.003, η2p=0.07. GAM with phase as a fixed factor, best model S: type-specific 
trendlines (with no global trendline) p=0.004, R2=24.3%. 



 
Fig S4. In addition to monitoring expression during the warming study, we surveyed the 
frequency of genes encoding for proteins involved in heat shock regulation among strains of 
M. aeruginosa based on an analysis of metagenome assembled genomes of three bacterial 
types isolated from inland lakes of Michigan. ZnPs is an abbreviation for Zn-dependent 
protease with chaperone function. Also note that as this count data was not normally 
distributed, we used a general linear model with a Poisson distribution, bacterial type as a 
fixed effect, and gene nested within strain as a random effect. Though some variation in gene 
number is evident, bacterial type was not a significant predictor of patterns in gene number 
for either the full model across all genes, or individual models considering each gene 
individually (all p-values > 0.05). 



 
Fig S5. Alternative illustration of the data represented in Fig 4 is shown to emphasize 
downregulation of most genes encoding for heat shock proteins in M. aeruginosa with 
temperature (ANOVA: temperature - F2, 402 = 10.02, p < 0.01; type - F2,16 = 2.17, p = 0.12; 
type x temperature interaction - F4, 402 = 3.67, p < 0.01). Relative gene expression was 
calculated as 2(-ΔΔCt), with rpoA as the reference gene and 20°C as the reference condition. To 
facilitate data visualization, each faceted plot has its own y-axis. Note that such 
downregulation is expected among constitutively expressed heat shock proteins, however two 
genes show a clear deviation, sharply increasing with temperature among oligotrophic 
genotypes, which is indicative of their role as inducible chaperones playing a key role in the 
heat shock response: DnaK1 and Hsp20. For these two genes, there was a significant type x 
temperature interaction: DnaK1 (F4, 28 = 2.83, p = 0.044) and Hsp20 (F4, 28 = 2.90, p = 0.040).  
 



 
Figure S6. Bacterial type-specific responses to temperature of M. aeruginosa through the 
differential expression of genes encoding for heat shock proteins (ANOVA on all HSPs: 
temperature- F2, 402 = 10.02, p < 0.01; type- F2,16 = 2.17, p = 0.12; type x temperature 
interaction - F4, 402 = 3.67, p < 0.01). Type-specific responses to temperature were also 
observed for two models run on individual gene targets (DnaK1 type x temperature 
interaction: F4, 28 = 2.83, p = 0.044; Hsp20 type x temperature interaction: F4, 28 = 2.90, p = 
0.040). Note that relative gene expression was calculated as 2(-ΔΔCt), with rpoA as the 
reference gene and 20°C as the reference condition and that data were boxcox transformed 
before statistics. Unlike Fig 4 & S5 the transformed rather than the raw data is plotted here.  



 
Fig S7. Elevated temperatures caused a similar decline in expression of the mcyE toxin gene 
across each of three bacterial types of M. aeruginosa. This gene encodes for a protein in the 
microcystin hepatoxin production pathway. Linear mixed effects model for mcyE: F2,28 = 
12.09, p < 0.001.    



 
Figure S8. Bacterial types show significantly different overall patterns in growth and 
expression dynamics (MANOVA: type - F34,58=3.25, p<0.0001, η2p=0.66; temperature - 
F34,58=1.33, p=0.167, η2p= 0.44; type*temperature: F68,124=0.69, p=0.952, η2p=0.28). Distinct 
clustering of bacterial types is illustrated using a Linear Discriminates Analysis with arrows 
representing the coefficients of variance explained by each variable in the model. To aide in 
better visualization of gene expression arrows, relative to Fig 5, the length of all arrows was 
multiplied by 4. Data for all temperatures except 20°C is included in the analysis to enable 
the calculation of relative gene expression with 20°C as the baseline.   



Table S3. Coefficients for discriminant functions illustrated in Fig. 5 & S8. HSP = Heat 
Shock Protein 

Trait Category DF1 DF2 

ClpB HSP Expression 0.2452219 -0.020266293 

DnaJ HSP Expression 0.3949882 1.015767325 

DnaK-fp HSP Expression 0.5177078 0.22510684 

DnaK1 HSP Expression 0.1376740 0.246831888 

DnaK3 HSP Expression -0.3358387 -0.114430812 

GroEL HSP Expression -0.2691971 -0.196500875 

GroES HSP Expression -0.3356082 -0.222568824 

GrpE HSP Expression 
-0.11022 -0.24519 

Hep Toxin Production Pathway 
Expression -0.24996 0.008437 

HrcA HSP Expression 
-0.5341 -0.1945 

Hsp20 HSP Expression 
-0.30609 -0.04386 

HspA HSP Expression 
0.305893 0.036885 

HtpG HSP Expression 
0.138031 0.275579 

ExpPhase (Week 1) Growth Dynamics 
1.381906 -3.05586 

Week 2 Growth Dynamics 
-1.05839 1.207324 

Week 3 Growth Dynamics 
2.806489 1.098374 

Week 4 Growth Dynamics -2.2787878 0.121005699 
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