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ABSTRACT Biological diversity is declining across the tree of life, including among 
prokaryotes. With the increasing awareness of host-associated microbes as potential 
regulators of eukaryotic host physiology, behavior, and ecology, it is important to 
understand the implications of declining diversity within host microbiomes on host 
fitness, ecology, and ecosystem function. We used phytoplankton and their associated 
environmental microbiomes as model systems to test the independent and interactive 
effects of declining microbiome diversity with and without other stressors often caused 
by human activity—elevated temperature and altered nutrient availability. We found 
effects of low microbiome diversity on host physiology, phytoplankton community 
dynamics, and nutrient cycling. Low microbiome diversity caused greater host cellular 
stress, as indicated by elevated δ13C and δ15N. Microbiome diversity also significantly 
affected host cell morphological metrics, likely as a consequence of this effect on cell 
stress. Despite causing greater host cellular stress, the effects of low microbiome diversity 
on host community ecology included elevated phytoplankton community diversity and 
biomass. The diversity of these host-associated microbes also had cascading implications 
on ecosystem nutrient cycling, where lower microbiome diversity caused a depletion 
of total dissolved N and P in the environment. The magnitude of these effects, caused 
by microbiome diversity, was greatest among nutrient-depleted environments and at 
elevated temperatures. Our results emphasize the widespread implications of declining 
host-associated microbial diversity from host cellular physiology to ecosystem nutrient 
cycling. These demonstrated effects of declining microbiome diversity are likely to 
be amplified in ecosystems experiencing multiple stressors caused by anthropogenic 
activities.

IMPORTANCE As evidence is emerging of the key roles that host-associated micro­
biomes often play in regulating the physiology, fitness, and ecology of their eukaryotic 
hosts, human activities are causing declines in biological diversity, including within the 
microbial world. Here, we use a multifactorial manipulative experiment to test the effects 
of declining diversity within host microbiomes both alone and in tandem with the effects 
of emerging global changes, including climate warming and shifts in nutrient bioavaila­
bility, which are inflicting increasing abiotic stress on host organisms. Using single-celled 
eukaryotic phytoplankton that harbor an external microbiome as a model system, we 
demonstrate that diversity within host-associated microbiomes impacts multiple tiers of 
biological organization, including host physiology, the host population and community 
ecology, and ecosystem nutrient cycling. Notably, these microbiome diversity-driven 
effects became magnified in abiotically stressful environments, suggesting that the 
importance of microbiome diversity may have increased over time during the Anthropo­
cene.
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A ll eukaryotes harbor microbiomes and these host-associated microbes are often 
key regulators of host physiology and fitness (1–3). Host-associated microbes can 

also modulate the behavior and population ecology of their hosts, with cascading 
implications on the ecological interactions among hosts (4–7). However, as evidence 
is emerging of the critical roles that microbiomes play, human activities are causing 
biological diversity declines, including within the microbial world (8–10). Therefore, we 
tested the effects of declining diversity within host microbiomes both alone and in 
combination with the effects of other global changes that are inflicting abiotic stress on 
host organisms, specifically climate warming and shifts in nutrient bioavailability.

We use phytoplankton and their associated bacteria as a model system to address this 
question because (i) these single-celled eukaryotes harbor external microbiomes that 
are amenable to experimental manipulation, (ii) phytoplankton serve a critical role in 
aquatic food webs and the global carbon cycle, and (iii) phytoplankton model systems 
have played a key role in the development of community ecology theory ever since 
the proposal of the paradox of the phytoplankton by G. E. Hutchinson (11–14). Using 
this tractable model system, we aim to elucidate the importance of taxonomic and 
phenotypic diversity within microbiomes for a broad range of host organisms. Applica­
tions of this work within phytoplankton include improvements in the production of 
phytoplankton-based biofuels and biopharmaceuticals (15). Such model systems could 
also be applied to organisms less amenable to manipulation, like wild plant and animal 
host populations in natural ecosystems, or even contribute to clarifying the effects of 
microbiome diversity on human health, as humans harbor increasingly depauperate 
microbiomes due to modern diets, use of antimicrobial drugs, and residence in relatively 
sterile human-built rather than natural environments (10, 16).

Furthermore, it is essential to understand the fundamental regulators of phytoplank­
ton ecology because phytoplankton are responsible for half of global oxygen production 
(14) and form the base of aquatic food webs (17, 18). Therefore, changes in phyto­
plankton cellular stoichiometry, population abundances, and community composition 
could have cascading effects on higher trophic levels and biogeochemical cycles. 
Phytoplankton harbor bacteria and other microbes within the phycosphere, a micro­
habitat enriched in sugars and other byproducts of photosynthesis that immediately 
surround the host cell (19). The concentrated gradient of exudates surrounding the 
phytoplankton cell attracts a diversity of bacteria from the surrounding environment 
via chemotaxis (19, 20). Phytoplankton-bacterial interactions within the phycosphere 
have been found to range from mutualism and commensalism to competition and 
parasitism (19). Furthermore, phytoplankton-associated bacteria have been found to 
regulate phytoplankton fitness, population ecology, and even community dynamics (7, 
21). Specifically, phytoplankton monocultures have attained greater carrying capacities 
when grown with, versus without, their microbiome (21, 22). In addition, the pres­
ence versus absence of phycosphere bacteria has been shown to mediate ecological 
interactions between species of phytoplankton hosts, with phycosphere bacteria tending 
to promote phytoplankton coexistence in pairwise mutual invasibility experiments (7). 
We now expand upon this work by testing how the diversity of bacteria within the 
phycosphere affects phytoplankton physiology, fitness, and community dynamics within 
more complex multi-species communities.

We test the importance of diversity within the host microbiome against temperature 
and the bioavailability of nutrients in ecosystems because these two abiotic factors are 
both known to be important regulators of phytoplankton abundance and diversity and 
are changing due to human activities (23, 24). Climate change-mediated increases in 
temperatures are expected to decrease phytoplankton diversity, whereas predictions for 
the effect of temperature increase on phytoplankton abundance are context depend­
ent on the specific ecosystem and taxon of phytoplankton (23, 25–27). Eutrophication, 
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caused by the accumulation of excess phosphorus and nitrogen in aquatic systems from 
human activities, tends to increase phytoplankton abundance but decrease phytoplank­
ton diversity (28–30). By contrast, nutrient-poor conditions or oligotrophication, caused 
by efforts to curtail nutrient runoff as well as the introduction of invasive dreissenid 
mussels, tends to decrease phytoplankton abundance and increase phytoplankton 
diversity (28, 30–33).

We employed a 3 × 4 × 2 multifactorial design in which phytoplankton commun­
ities were exposed to three microbiome diversity treatments, four concentrations of 
phosphorus, and two temperatures. With this design, we aimed to test how host-micro­
biome diversity alters phytoplankton stoichiometry, population and community-wide 
abundance, phytoplankton diversity, and ecosystem-level nutrient cycling. To specifically 
test the effects of host-associated microbiomes, rather than communities of aquatic 
microbes that may or may not associate with phytoplankton, we build upon a prior 
experiment in which phytoplankton hosts were cleaned of microbes and then exposed 
to microbial communities from aquatic ecosystems to permit recruitment of natural 
microbiomes. This prior work demonstrated that these phytoplankton microbiomes 
consist of a subset of taxa recruited from these aquatic ecosystems, are highly host-spe­
cies specific, and confer fitness benefits to their host (21). By leveraging these experimen­
tally assembled microbiomes in this model system, we now aim to advance our broader 
understanding of how host-microbiome diversity modulates host health in complex 
environments.

MATERIALS AND METHODS

For more details on the experimental methods and statistical analyses, see the supple­
ment. In this study, we used five-species phytoplankton communities by drawing from 
our prior work to generate axenic (i.e., free of all bacteria) and xenic cultures of Chlorella 
sorokiniana, Coelastrum microporum, Monoraphidium minutum, Scenedesmus acuminatus, 
and Selenastrum capricornutum. Four of these unicellular green phytoplankton belong 
to the order Sphaeropleales while C. sorokiniana belongs to the order Chlorellales. 
We chose these fives species of phytoplankton because each is common throughout 
aquatic habitats of the USA, occurring in 9.3%–55.0% of the ~1,100 lakes surveyed 
via the US Environmental Protection Agency’s 2007 National Lake Assessment. Further­
more, this species pool includes a range of interaction types, ranging from competition 
to ecological facilitation (7, 34). Therefore, phytoplankton monocultures of these five 
species were rendered axenic and used in a microbiome assembly study as described 
by our prior work (7, 21). In brief, initially, axenic monocultures acquired freshwater 
bacterial communities when submerged in pond water collected from a long-term 
experimental pond facility in Pinckney, Michigan, USA (21, 35). For this current study, we 
obtained phytoplankton microbiomes from monocultures that had assembled microbial 
communities from Pond 2 and Pond 3 (Fig. S1a). These ponds contained distinct 
bacterial communities, which resulted in phytoplankton monocultures recruiting distinct 
microbiomes from each pond (Fig. S1b). These phytoplankton-associated microbiomes 
were then used in the current study to inoculate axenic phytoplankton communities with 
three levels of microbiome diversity.

Experimental design

We carried out a 6-week experiment using a 3 × 4 × 2 multifactorial design to test 
for the independent and interactive effects of diversity within the host microbiome, 
lake phosphorus concentration, and water temperature on metrics spanning from host 
physiology to ecosystem nutrient cycling (Fig. 1). We had five biological replicates per 
treatment combination for a total of 120 flasks. Each flask contained 100 mL of sterile 
COMBO plankton growth media (36) at the corresponding phosphorus concentration 
and was inoculated with each of the five phytoplankton species to create an axenic 
community with a total cell density of ~12,000 cells/mL.
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For detailed methods and an illustration of how we created the microbiome diversity 
treatments, see the supplemental text and Fig. S2. In brief, for each of the five phyto­
plankton species described above, we grew an axenic monoculture, a xenic monoculture 
with a microbiome recruited from Pond 2, and a xenic monoculture with a microbiome 
recruited from Pond 3 in full-strength COMBO media. These 15 monocultures were used 
to create phytoplankton-associated bacterial communities as described in our prior work 
by separating bacteria cells from host cells using 3.0 µm filters (21). To inoculate axenic 
phytoplankton communities with freshwater bacteria found in association with each of 
the five host species, we pooled filtrates containing bacterial communities from each 
phytoplankton monoculture from a respective group (i.e., axenic, Pond 2, and Pond 3). To 
generate the high microbiome diversity treatment, we used 15 µL of the pooled Pond 2 
bacterial communities and 15 µL of the pooled Pond 3 bacterial communities for each of 
the 40 flasks containing axenic five-species phytoplankton communities. For the medium 
microbiome diversity treatment, we added 30 µL of the pooled Pond 3 bacterial com­
munities to a second set of 40 flasks. To generate the low microbiome diversity treat­
ment, we added 30 µL of the pooled axenic filtrate (hereinafter referred to as our T0 
axenic inoculant) to the last set of 40 flasks. Prior to inoculating these five-species 
phytoplankton communities, we confirmed the axenic status of our stock cultures via 
visualization of DAPI-stained cultures on a Zeiss Axio Imager 2 fluorescence microscope. 
We also used 16S rRNA amplicon sequencing (as described in detail below) to character­
ize bacterial community composition, richness, as well as the taxonomic overlap of each 
of our three inoculants containing bacterial communities at the time of inoculation. 
Results from 16S rRNA sequencing of our T0 axenic inoculant were consistent with axenic 
biomass, yielding fewer total reads and similar taxonomic richness compared to control 
blanks that were processed simultaneously to control for contamination during library 
preparation and sequencing (see Fig. S3 and 4; Table S1). However, we acknowledge that 

FIG 1 Illustration of experimental design that includes microbiome diversity, phosphorus concentration, and temperature treatments. All 120 flasks were 

inoculated with the identical five-species community of phytoplankton, with five replicates assigned to each of the 24 treatment combinations. This illustration 

was created using BioRender.
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despite the use of aseptic technique, our axenic flasks became contaminated with a small 
number of bacterial taxa likely due to repeated sampling and media replenishment. 
Therefore, we refer to this treatment as “low microbiome diversity” from here onward. 
These bacteria residing within the low microbiome diversity treatment originated nearly 
entirely from phycosphere bacterial communities inhabiting the other two tiers of our 
microbiome diversity treatment. Specifically, 48.98% of the bacterial taxa and 77.23% of 
the total sequencing reads of bacteria inhabiting the low microbiome diversity flasks by 
the end of the 6-week study originated from the medium and high microbiome diversity 
flasks according to Bayesian SourceTracker (37) (Fig. S5; Table S2).

For our phosphorus treatment, we used sterile plankton growth media, COMBO, 
that we modified to range from oligotrophic to hypereutrophic nutrient conditions (i.e., 
aquatic trophic state) using the following percentages of the K2HPO4 stock solution: 0% 
for oligotrophic media; 1% for mesotrophic; 2% for eutrophic; and 10% for hypereutro­
phic. Total phosphorus concentrations of our starting media ranged from 5.0 to 310 µg/L, 
which encompasses the range of total phosphorus documented in over 95% of lakes in 
the northeastern United States (38).

All 120 flasks were incubated at their corresponding temperature treatment on shaker 
tables set to 80 RPM and under 81 μE lighting with a 16:8 hour light-dark cycle with 
the spatial location of flasks randomized by microbiome diversity and phosphorus 
treatments. To generate the elevated temperature treatment, heat mats were set to a 
constant temperature, resulting in average daytime temperatures of 28.8 ± 0.03°C SE 
throughout the duration of the study, which contrasted with the ambient treatment 
maintained at 23.0 ± 0.02°C SE.

Bacterial community dynamics

With recent advances in flow cytometry, we can now measure phenotypic diversity 
metrics of taxonomically rich communities of bacteria. Critically, these phenotypic 
diversity metrics correlate with taxonomic diversity as measured via amplicon sequenc­
ing but require only small sample volumes (39). To obtain an independent measure of 
bacterial diversity for each of our five biological replicates per treatment combination, 
we determined bacterial phenotypic diversity at the end of the 6-week experiment for 
all 120 flasks using a BD FACSCanto II system. We gated the bacterial populations using 
the FITC-A and the PerCP-Cy5.5 fluorescence channels. While a percentage of bacterial 
cells that remained adhered to a phytoplankton cell would have been excluded from this 
bacterial gate, we expect this occurrence would have been consistent across experimen­
tal treatments and would therefore not have caused systematic bias in our estimates 
of bacterial phenotypic diversity. Furthermore, we verified that there was minimal cell 
aggregation within the bacterial gate by plotting area versus height dot plots using the 
FITC-A and FITC-H channels. Lastly, we quantified bacterial phenotypic diversity using 
the Hill number 2 (2D, Inverse Simpson index) calculated with the Phenoflow analysis 
package in R (39).

To further characterize bacterial community composition at the end of the 6-week 
experiment, we also carried out taxonomic sequencing for each of our 24 treatment 
combinations. We pooled our five biological replicates per treatment combination due 
to a limited volume per flask. We collected biomass from all five biological replicates per 
combination onto a single 0.22 µm nitrocellulose filter and extracted DNA from filters 
using a Qiagen DNeasy Blood and Tissue Kit. This filter size ensured that we captured 
all bacterial taxa, including those most closely associated with phytoplankton, which 
may be embedded in the mucosal matrix surrounding phytoplankton cells. We used 
the same filtering and extraction methods for our T0 samples of the Pond 2, Pond 3, 
and axenic groups used to inoculate all flasks. The V4 region of the 16S rRNA gene was 
amplified using 515f/806r primers and sequenced on a 2 × 150 Illumina MiSeq run at the 
UCSD Institute for Genomic Medicine (40). To facilitate the interpretation of low biomass 
samples, we also included controls during library preparation and sequencing, including 
four no-template-control blanks and a four-sample dilution series of a ZymoBiomics 
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Microbial Community Standard. We processed reads using QIIME2, DADA2, and phyloseq 
(41–43). Merged reads were assigned taxonomy using the SILVA 138 reference database 
(44, 45). From 24 samples, which represent bacterial communities from each of our 
unique treatment combinations after 6 weeks, we recovered 141 ASVs at a median 
of 13,655 bacterial reads after removing phytoplankton chloroplast reads but prior to 
rarefaction.

Phytoplankton stoichiometry, morphology and ecology

To measure the initial host cell stoichiometry of axenic stocks, we cleaned cell pel­
lets of COMBO media using serial separation-by-centrifugation with sterile NaCl saline 
solution. Each washed cell pellet was then collected onto a pre-weighed, pre-combusted 
Whatman GF/F filter, filters were dried for 48 hours at 60°C, weighed to determine 
phytoplankton biomass, and stored for isotopic analysis. We measured final host cell 
stoichiometry from each flask after 6 weeks using this same method with the exception 
that an additional sonication step was added to dislodge bacteria from the mucilage of 
the phycosphere. While our sonication and serial separation-by-centrifugation method 
should have removed most bacterial cells, we acknowledge that our phytoplankton 
biomass may have retained trace amounts of bacterial cells. Phytoplankton biomass 
was then scraped off of filters and ground using a mortar and pestle. We packed 3 mg 
of powdered phytoplankton biomass into 3.5 × 5 mm tin capsules and measured C:N, 
δ15N, and δ13C using a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ 
Europa 20–20 isotopic ratio mass spectrometer at the University of California Davis 
Stable Isotope Facility.

To determine how cell morphology varied by treatment, including cell area, diameter, 
height, and perimeter of each phytoplankton species, we randomly selected two flasks 
per treatment combination for analysis using an Amnis ImageStreamX Mk II Imaging 
Flow Cytometer (Cytek Biosciences, Fremont, California, USA). Cell morphology data were 
then processed using random forest and convolution neural networks to classify data by 
phytoplankton species using Amnis AI Software.

To determine how phytoplankton cell density and species composition varied by 
treatment at the end of the 6-week study, we counted either 400 cells or four hemocy­
tometer grids (3.6 µL), whichever came first, of each species per flask (46). Finally, we 
measured phytoplankton biomass after 6-weeks using the methods described above for 
stoichiometry.

Ecosystem nutrient cycling

We determined the concentrations of total dissolved nitrogen and phosphorus 
remaining in the spent growth media for each of the 120 flasks at the end of our 
6-week study by processing samples at the Marine Chemistry Lab of the University of 
Washington’s School of Oceanography using the Valderrama 1981 protocol (47).

Statistical analysis

To test whether bacterial phenotypic diversity varied across microbiome diversity 
treatments, we used a priori ordered predictions to calculate a directional ANOVA using 
Spearman’s rank correlations (48). We then used 16S amplicon data to test the relation­
ship of bacterial community composition and phylogenetic membership with each 
experimental treatment using the quantitative Jaccard and weighted UniFrac distance 
matrices, respectively, with a distance-based redundancy analysis and permutational 
analysis of variance. We then used a multiple linear regression to determine whether 
bacterial alpha diversity was predicted by our three treatments: microbiome diversity, 
phosphorus treatment, and temperature treatment. We also used three-way ANOVA 
and Tukey’s HSD post hoc tests to evaluate the independent and interactive effects 
of our three treatments on each of the following dependent variables: δ15N and δ13C 
of phytoplankton biomass, cell abundance of each of the five phytoplankton species, 

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01462-24 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Fe

br
ua

ry
 2

02
5 

by
 2

60
3:

80
01

:4
e0

0:
2e

0d
:9

7f
:3

ff
2:

82
c1

:1
e7

a.

https://doi.org/10.1128/msystems.01462-24


Shannon diversity of the phytoplankton community, and total dissolved nitrogen and 
total dissolved phosphorus of the media. To measure the effects of the three treatments 
on phytoplankton cell morphology, we used a multiple linear regression and multivariate 
analysis of variance (MANOVA) to model the collective outcome of mean area, diameter, 
height, and perimeter of the cell as predicted by the three treatments and phytoplankton 
species as fixed effects with interactions between all fixed effects. We also ran separate 
MANOVAs for each of the five phytoplankton species with fixed and interaction effects 
for the three treatments. For more information regarding the R packages and functions 
used to complete statistical analyses, consult the supplemental material and methods 
text.

To conceptually diagram causal relationships between treatments, outcomes, and 
co-factors measured within this study, we composed a directed acyclic graph (DAG). 
We then evaluated causal inference given our experimental design following the four 
assumptions outlined by Kimmel et al.: excludability, no interference, no multiple 
versions of treatments, and no noncompliance (49). In brief, our experimental design 
meets these assumptions by (i) satisfying excludability, whereby the outcomes of our 
treatments are the result of the factorial interaction of microbiome diversity, phospho­
rus, and temperature and not a result of another unintended outcome caused by the 
application of our treatments (see DAG in Fig. S6). (ii) Our experimental design has 
no interference between experimental flasks (units), meaning the treatment of one 
flask does not affect the outcome of another independent flask over the course of 
this 6-week study. (iii) We acknowledge that our factorial design can lead to outcomes 
conditional on multiple treatment versions; however, we define and carefully conclude 
at the level of treatment combinations. Lastly (iv) our experimental design satisfies the 
no noncompliance assumption, through validations with T0 and TF measurements that 
the microbiome diversity, phosphorus, and temperature treatments had their intended 
effects. We can therefore infer causality for these three main treatments on each of our 
measurements, but also note the relevant covariates and potential indirect pathways 
that could be causing these effects in our DAG.

RESULTS

Microbiome diversity

While our microbiome diversity treatments were designed to incorporate all microbes 
smaller than 3.0 µm in size, including both bacteria and fungi, we evaluate the preserva­
tion of our diversity treatment levels by focusing on phenotypic and taxonomic diversity 
of bacteria, rather than fungi, due to the more robust methods presently available 
for bacteria. Through the end of our 6-week study, the three levels within our micro­
biome diversity treatment retained significant differences in bacterial diversity, with the 
directionality as expected, based on two independent experimental techniques. First, 
bacterial phenotypic diversity, as measured by flow cytometry, demonstrated the lowest 
diversity within the low microbiome diversity treatment and the highest diversity within 
the high treatment (Fig. 2a; directional analysis of variance, P < 0.05). Second, marker 
gene sequencing data further showed this treatment effect in bacterial taxonomic 
diversity, with low, medium, and high microbiome richness levels of the treatment 
containing: µ = 9.88 ASVs ±2.61 SE; 33.12 ASVs ± 1.83; and 37.38 ASVs ± 2.12, respectively 
(F2,17=61.69, P < 0.0001; Fig. 2a; Fig. S7). Furthermore, samples within each level of 
the diversity treatment varied in taxonomic composition, showing that the treatment 
tested the effects of diversity rather than any specific taxonomic community. Specifically, 
only 19.75% of the 81 ASVs found in the high-diversity treatment were observed across 
all high-diversity amplicon sequencing samples, whereas the remaining 80.25% of taxa 
were found in some but not all of these samples. Similarly, only 20.25% of the 73 ASVs 
found in the medium diversity treatment were found in each medium diversity sample, 
while none of the 49 ASVs found in the low diversity treatment were found across all low 
diversity samples.
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Furthermore, the microbiome diversity treatment was the strongest predictor of 
bacterial community composition among phytoplankton cultures (Fig. 2b; db-RDA using 
a quantitative Jaccard distance: F2,17=3.73, P < 0.0001; weighted UniFrac distance: 
F2,17=4.76, P < 0.0001, n = 8 per microbiome diversity treatment level). The phospho­
rus treatment was also a significant predictor of bacterial community composition 
(Fig. 2b; quantitative Jaccard: F3,17=1.59, P < 0.01; weighted UniFrac: F3,17 =2.09, P < 
0.05, n = 6 per phosphorus treatment level). This was particularly evident within the 
medium and high microbiome diversity levels, where the effect of the phosphorus 
treatment on bacterial community composition reflected a gradient from oligotrophic to 
hypereutrophic nutrient conditions (quantitative Jaccard: F3,10=2.75, P < 0.01; weighted 
UniFrac: F3,10=4.45, P < 0.001; Fig. S8). However, by the end of 6-weeks, the temperature 
treatment had no significant effect on phytoplankton-associated bacterial community 
composition (quantitative Jaccard: F1,17=1.29, P > 0.05; weighted UniFrac: F1,17=1.62, P 
> 0.05, n = 12 per temperature treatment level). In addition to the effects of our three 
factorial treatments, differences in bacterial community composition and richness may 
also be mediated by host factors such as biomass and host diversity (see causal pathways 

FIG 2 (a) The microbiome diversity treatment corresponded with bacterial phenotypic diversity, as measured via flow cytometry for each flask at the end 

of the 6-week study (directional analysis of variance incorporating a priori ordered prediction, P < 0.05). Diversity was calculated with an Inverse Simpson’s 

Index and standardized by a batch of flow cytometry samples, where one biological replicate per treatment combination was run in each batch. Furthermore, 

bacterial taxonomic diversity also differed among our microbiome diversity treatments (F2,17=61.69, P < 0.0001). Bacterial taxonomic richness was calculated 

using non-rarefied amplicon sequence data, see Fig. S3 for rarefied results. Replicate flasks assigned the same treatment combination were combined to obtain 

sufficient volume for amplicon sequencing resulting in a lower sample size for taxonomic analysis. (b) The microbiome diversity treatment was the dominant 

driver of microbiome composition (ANOVA on quantitative Jaccard distance—microbiome diversity: F2,17=3.73, P < 0.0001; phosphorus: F3,17=1.59, P < 0.01; 

temperature: F1,17=1.29, P > 0.05). (c) Despite distinct compositional differences among microbiome diversity treatments, when examining common ASVs only 

(>1% in proportional abundance within a treatment), 57% of ASVs were shared with at least one other microbiome diversity treatment. In addition, the percent 

of reads shared among each microbiome diversity is described below the number of ASVs, with the greatest number of shared reads between the medium and 

high microbiome diversity levels.
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in Fig. S6). Lastly, despite significant divergence across levels of the microbiome diversity 
treatment, there was a core community of ASVs that were shared among at least two 
of the three levels of the microbiome diversity treatment (57.14% of all common ASVs, 
where common was defined as those that comprised at least 1% of the community; Fig. 
2c). A summary of bacterial community composition and diversity at the beginning of 
the study, as well as composition and diversity at the end of the 6-week study across the 
diversity, phosphorus, and temperature treatments is provided in Table S3 and as heat 
maps in Fig. S9 and S10.

Phytoplankton cell stoichiometry and morphology

The phosphorus, microbiome diversity, and temperature treatments each significantly 
influenced phytoplankton δ13C and δ15N. Both isotopic ratios increased markedly with 
phosphorus concentration (δ13C: F3,91=213.3, P < 0.001, Fig. 3a; δ15N: F3,91=208.8, 
P < 0.001, Fig. 3b; Tables S4 and S5). However, within a trophic state, particularly 
the nutrient-limited oligotrophic and mesotrophic environments, there was a notable 
decrease of δ13C and δ15N with increasing microbiome diversity (δ13C: microbiome 
diversity F2,91=11.96, P < 0.001, microbiome diversity × phosphorus F6,91=3.61, P < 0.01; 
δ15N: microbiome diversity F2,91=25.8, P < 0.001, microbiome diversity × phosphorus 
F6,91=13.3, P < 0.001). While shifts in phytoplankton community composition alone 
would alter δ13C and δ15N due to interspecific variation in the isotopic signatures of 
phytoplankton, shifts in composition alone did not explain these patterns. We dem­
onstrate this by calculating expected isotopic signatures of community-level biomass 
collected at the week 6 timepoint by combining our data on isotopic signatures of 
each host species as an axenic monoculture and the proportions of each phytoplank­
ton species in each community at this same timepoint. In oligotrophic and mesotro­
phic environments, we found that our calculated estimates based on phytoplankton 
community composition were not significantly different between the low and high 
microbiome treatments (δ13C: low diversity µ = −17.3 ± .057 SE, high diversity µ = 
−17.5 ± .11, paired ANOVA: F1,37=4.05, P > 0.05; δ15N: low diversity µ = 13.2 ± .19, high 
diversity µ = 13.3 ± .10, paired ANOVA: F1,37=0.19, P > 0.05), whereas our measured 
results on the biomass obtained in the study were indeed significantly different (δ13C: 
low diversity µ = −16.1 ± .53, high diversity µ = −18.0 ± .53, paired ANOVA: F1,37=23.92, 
P < 0.01; δ15N: low diversity µ = 12.6 ± .74, high diversity µ = 10.2 ± .36, paired ANOVA: 
F1,37=14.07, P < 0.01). Lastly, phytoplankton isotopic ratios were also significantly greater 
in the ambient relative to the elevated temperature condition, although this effect of 
temperature for δ15N was context dependent on the microbiome treatments in nutrient-
limited environments (δ13C: F1,91=4.3, P < 0.05; δ15N: F1,91=54.6, P < 0.001; Table S4 and 
S5). This context dependency is further illustrated in our causal DAG, whereby bacterial 
microbiome diversity may mediate this relationship between our temperature treatment 
and phytoplankton δ15N (Fig. S6).

In addition, each treatment influenced phytoplankton cell morphology, collectively 
measured as cell area, diameter, height, and perimeter (MANOVA phosphorus: F = 10.26, 
P < 0.001; microbiome diversity: F = 2.15, P < 0.05; temperature: F = 4.71, P < 0.001; Fig. 
S11; Table S6). The phosphorus treatment was the strongest predictor of cell morphol­
ogy. Under oligotrophic conditions, we found larger cell sizes of C. sorokiniana, M. 
minutum, and S. acuminatus compared to hypereutrophic conditions, whereas we found 
the opposite trend of larger cell size under hypereutrophic conditions for C. microporum. 
As phytoplankton species was a significant main effect in our MANOVA, we also report 
MANOVAs for each phytoplankton species independently (see Table S7 to S11).

Phytoplankton community dynamics

Among the three experimental treatments tested, the microbiome diversity treatment 
had the greatest effect on total phytoplankton biomass with bacterial diversity inversely 
correlated with total biomass, while our phosphorus treatment was a significant but 
secondary factor (Fig. 4a; microbiome diversity: F2,94=51.98, P < 0.001; phosphorus: 
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F3,94=3.86, P < 0.05). Specifically, low microbiome diversity yielded over 40% greater 
biomass compared to high microbiome diversity. By contrast, the phosphorus treatment 
was the stronger predictor of phytoplankton cell density, while microbiome diversity was 
a secondary driver and inversely correlated with cell density (microbiome diversity: 
F3,96=3.65, P < 0.05; phosphorus: F3,96=144.1, P < 0.001). Specifically, hypereutrophic 
conditions resulted in phytoplankton cell densities that were on average 17.6 times 
greater than densities found in oligotrophic conditions. The effects of microbiome 
diversity in suppressing total biomass and cell density were particularly notable in lower 
nutrient environments (total biomass: microbiome diversity × phosphorus F6,94=7.13, P < 
0.001; cell density: microbiome diversity × phosphorus F6,96=3.66, P < 0.01). For example, 
microbiome diversity caused a decline in total cell density in oligotrophic conditions; 
however, when nutrient levels were high, cell density was greatest with intermediate 
microbiome diversity (Fig. 4b). In addition, ambient temperature conditions yielded 
phytoplankton cell densities that were on average 2.7 times greater than densities found 
in the elevated temperature treatment but had no significant effect on total biomass (cell 
density: F1,96=59.6, P < 0.001; total biomass: F1,94=2.46, P = 0.12; Table S12 and S13).

Furthermore, phytoplankton diversity was affected by each of the three treat­
ments (Fig. S6). Phosphorus concentration, as mediated by our phosphorus treatment, 
was negatively correlated with Shannon diversity of the phytoplankton community 
(F3,96=44.6, P < 0.001; Table S14). For example, all five species of phytoplankton 
tended to persist under oligotrophic conditions, whereas only three tended to persist 
under hypereutrophic conditions with the near extinction of C. sorokiniana and S. 
capricornutum in higher nutrient conditions (C. sorokiniana: F3,96=18.8, P < 0.001; S. 
capricornutum: F3,96=2.11, P = 0.10). Within a trophic state, microbiome diversity was 
negatively correlated with phytoplankton community diversity with this trend particu­
larly notable in lower nutrient environments and at elevated temperatures (microbiome 
diversity: F2,96=4.2, P = 0.012; microbiome diversity × phosphorus: F6,96=3.0, P = 0.011; 

FIG 3 Trophic state, as assigned by our phosphorus treatment, was the dominant driver of (a) mean δ13C and (b) δ15N of phytoplankton biomass. Microbiome 

diversity and temperature were significant, but secondary, drivers of phytoplankton δ13C and δ15N. Biomass was sampled at the end of the six-week experiment 

where five-species phytoplankton communities underwent a combination of temperature, microbiome diversity, and phosphorus treatments. ANOVA of δ13C—

microbiome diversity: F2,91=12.0, P < 0.0001, phosphorus: F3,91=213.3, P < 0.0001, temperature: F1,91=4.3, P = 0.042; ANOVA of δ15N—microbiome diversity: 

F2,91=25.8, P < 0.0001, phosphorus: F3,91=208.8, P < 0.0001, temperature: F1,91=54.6, P < 0.0001. See Tables S2 and S3 for ANOVA tables. Dashed lines show 

the mean values of each metric for the axenic five-species phytoplankton communities that were grown in full-strength COMBO media and used to set up the 

experiment. Pairwise comparisons were made within each trophic state and statistically similar groups, as determined by four independent Tukey’s HSD tests (i.e., 

one for each trophic state), are denoted by letters.
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microbiome diversity × temperature: F2,96=5.9, P < 0.01). In particular, high microbiome 
diversity corresponded with a reduced occurrence of C. sorokiniana, C. microporum, and 
S. capricornutum (Fig. 5; each P-value < 0.05; see Table S15 to S19 for statistical results per 
species).

Nutrient cycling

At the end of this 6-week study, the phosphorus treatment contributed to differences 
in total dissolved nitrogen and phosphorus with the oligotrophic treatment resulting 
in N concentrations nearly two times greater than concentrations found in the hyper­
eutrophic treatment (Fig. 6; Nitrogen: F3,87=132.9, P < 0.0001, Table S20; Phosphorus: 
F3,87=173.3, P < 0.0001, Table S21). Total dissolved phosphorus concentrations were 
positively correlated with the phosphorus treatment, which was expected because 
our starting hypereutrophic condition contained 32 times greater phosphorus than 
our oligotrophic condition. However, throughout the experiment, the difference in 
phosphorus concentration among trophic states declined with the final hypereutrophic 
condition containing only 7.5× greater phosphorus than the oligotrophic condition.

More strikingly, within a trophic state, microbiome diversity corresponded strongly 
with dissolved nutrient concentrations (Fig. 6; nitrogen: F2,87 = 14.8, P < 0.0001 and 
phosphorus: F2,87 = 12.45, P < 0.0001). Specifically, high microbiome diversity correspon­
ded with a 20% and 33% increase in the total dissolved nitrogen and phosphorus 
concentrations when compared to the low diversity treatment. In addition to a potential 

FIG 4 (a) Microbiome diversity was the dominant driver of phytoplankton biomass, as measured at the end of the 6-week study, particularly in more 

phosphorus-limited environments. ANOVA—microbiome diversity: F2,94=52.0, P < 0.001, phosphorus: F3,94=3.9, P = 0.012, phosphorus × microbiome diversity: 

P < 0.0001 (see Table S12 for ANOVA table). (b) By contrast, the trophic state was the dominant driver of phytoplankton cell density among the five-species 

phytoplankton communities. Within each trophic state, microbiome diversity also influenced phytoplankton cell density, with divergent patterns as phosphorous 

concentrations increased. ANOVA—microbiome diversity: F2,96=3.7, P = 0.030, phosphorus: F3,96=144.1, P < 0.0001, temperature: F1,96=59.6, P < 0.0001 (see 

Table S13 for ANOVA table). Pairwise comparisons were made within each trophic state and statistically similar groups, as determined by four independent 

Tukey’s HSD tests (i.e., one for each trophic state), are denoted by letters.
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direct effect of microbiome diversity on nutrient concentrations, these results could be 
mediated via indirect effects of microbiome diversity on phytoplankton biomass (see 
causal pathways in Fig. S6).

DISCUSSION

We show that diversity within host-associated microbiomes can have significant 
implications for multiple tiers of biological organization, including phytoplankton 
physiology, phytoplankton population and community ecology, and ecosystem nutrient 
cycling. Particularly, we find that these effects caused by microbiome diversity can 
become magnified in abiotically stressful environments.

Microbiome diversity effects on host physiology

We show that microbiome diversity can affect host cell stoichiometry and morphology. 
Specifically, greater microbiome diversity corresponded with reduced cellular stress 
among phytoplankton, where phytoplankton co-cultured with high diversity micro­
biomes show more negative δ13C and δ15N. As phototrophs preferentially assimilate 
lighter isotopes, more negative or lighter isotopic signatures are indicative of increased 
isotopic fractionation due to increased resource availability (50–53). A more negative 
δ13C of phytoplankton biomass is often indicative of greater CO2 availability (52), 
which could have been a consequence of higher respiration rates that are known 
to occur among more diverse bacterial communities (54). The more negative δ15N 
of phytoplankton biomass that was prevalent among our high microbiome diversity 
treatment may have been the result of increased N availability caused by bacterial N2 

FIG 5 Trophic state, as defined by phosphorus concentration, was the main driver of phytoplankton diversity, whereas microbiome diversity was a signifi-

cant but secondary driver of phytoplankton diversity (ANOVA—microbiome diversity: F2,96=4.2, P = 0.018, phosphorus: F3,96=44.6, P < 0.0001, temperature: 

F1,96=0.04, P = 0.85). See Table S14 for the ANOVA table. The mean relative abundance of each of the five phytoplankton species is represented as a stacked 

bar chart for each treatment combination. Pairwise comparisons were made within each trophic state and statistically similar groups, as determined by four 

independent Tukey’s HSD tests (i.e., one for each trophic state), are denoted by letters.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01462-2412

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

7 
Fe

br
ua

ry
 2

02
5 

by
 2

60
3:

80
01

:4
e0

0:
2e

0d
:9

7f
:3

ff
2:

82
c1

:1
e7

a.

https://doi.org/10.1128/msystems.01462-24


fixation and/or enhanced N-cycling. Even though different species of phytoplankton 
vary in their isotopic signatures, shifts in phytoplankton community composition alone 
could not explain these isotopic patterns; instead, microbiome diversity appeared to 
alter isotopic signatures at the intraspecific level of phytoplankton. These effects of 
microbiome diversity were most evident in abiotically stressful environments, particu­
larly our elevated temperature treatment paired with nutrient stress in oligotrophic 
and mesotrophic conditions. Due to the well-established positive relationship between 
diversity and ecosystem function, we had expected that microbiome diversity would 
promote nutrient cycling and therefore alleviate host nutrient stress. Our results 
corroborate this phenomenon and suggest that greater microbiome diversity did 
increase total N and P in the environment, as shown in Fig. 6. However, this increase 

FIG 6 Trophic state, as determined by phosphorus concentration, was the dominant driver of (a) total nitrogen and (b) total phosphorus in spent media, while 

microbiome diversity was a significant but secondary driver of total N and P concentrations at the end of the 6-week study. Total N and P concentrations 

were measured of the supernatant from cultures that were pelleted to remove phytoplankton and bacterial cells. ANOVA total nitrogen—microbiome diversity: 

F2,87=14.8, P < 0.0001, phosphorus: F3,87=132.9, P < 0.0001; temperature: F1,87=2.2, P = 0.13; ANOVA total phosphorus—microbiome diversity: F2,87=12.45, P < 

0.0001, phosphorus: F3,87=173.25, P < 0.0001, temperature: F1,87=0.12, P = 0.73. See Table S20 and S21 for ANOVA tables and Fig. S12 to see the comparisons for 

total phosphorous in an oligotrophic environment. Pairwise comparisons were made within each trophic state and statistically similar groups, as determined by 

four independent Tukey’s HSD tests (i.e., one for each trophic state), are denoted by letters.
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in total N and P could also be the consequence of lower phytoplankton abundance 
observed in the high microbiome diversity treatment. Furthermore, considering that 
we also observed reduced N stress among phytoplankton hosts in the high diversity 
treatment, particularly in mesotrophic environments, these results could indicate that 
hosts were most limited by nutrients other than N and P, or that diverse bacterial 
communities were capable of more thorough resource extraction, leading to greater 
competition with phytoplankton. Overall, these results add to the growing evidence that 
microbiomes may have particularly important implications for host health when hosts 
are under stress, similar to studies of plants and insects experiencing drought stress (55, 
56).

In addition, microbiome diversity had widespread implications for host cell morphol­
ogy. We hypothesized this link between diversity and morphology due to the roles 
of bacteria and host cell morphology in mediating nutrient acquisition. For example, 
the surface-area-to-volume ratio can regulate the acquisition of nutrients by a host 
cell and be an indicator of host nutrient stress (57). Smaller cells are advantageous in 
nutrient-depleted environments by facilitating increased nutrient diffusion per unit of 
cell volume (57). We found this expected pattern of reduced cell sizes in nutrient-deple­
ted environments for one of the five species tested, C. microporum. However, overall, the 
directionality of the observed effects of microbiome diversity on host cell morphology 
were host species-specific and the magnitude of these effects tended to be weaker than 
the effects of our phosphorus or temperature treatments. Nonetheless, our finding of 
significant effects of diversity on morphology for four of the five host species tested 
shows that the microbiome has important implications for the regulation of host cell 
morphological plasticity. While other studies have found that host cell morphology can 
be regulated by the introduction of individual strains of pathogenic bacteria, our results 
now demonstrate how diversity within a host-microbiome can have similar effects on 
host cell morphology (58–60).

Microbiome diversity effects on phytoplankton population and community 
ecology

We also found that microbiome diversity corresponded with reduced phytoplankton 
community cell density, biomass, and diversity. As with our findings that the effects of 
microbiome diversity on host physiology were magnified under nutrient limitation, we 
found that the negative correlation between microbiome diversity and both phytoplank­
ton diversity and abundance tended to be strongest in the most abiotically stressful 
conditions (i.e., oligotrophic environments under elevated temperatures). These results 
illustrate that the effects of microbiome diversity on the ecological outcomes for host 
communities are dependent upon the context of abiotic stressors. This aligns with 
studies of plant-soil systems that have found that microbiome networks are often 
destabilized by abiotic stressors, with microbes most often exacerbating the effects of 
stress on their host organisms (61, 62). However, studies have also found the converse, 
where host microbiomes can alleviate stress, and can confer the greatest magnitude of 
beneficial effects under the most stressful environmental conditions (62, 63).

However, the directionality of these effects of microbiome diversity on phytoplankton 
community cell density, biomass, and diversity contrast with our expectations as drawn 
from prior work in this system. Our past work on phytoplankton monocultures indica­
ted that populations maintained with diverse microbiomes as well as single bacterial 
isolates tended to attain higher carrying capacities compared to axenic phytoplankton, 
whereas here we find that microbiome diversity suppressed phytoplankton cell densities 
in five-species communities (21, 22). We had also expected that a higher diversity of 
bacteria might sustain a more diverse community of host species due to the host-specif­
icity of microbiome assembly in this system (21). Furthermore, we previously found that 
the presence versus absence of a microbiome most often facilitated pairwise phyto­
plankton species coexistence and reduced competitive exclusion, whereas here we find 
microbiome diversity is inversely correlated with phytoplankton community diversity 
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(7). As has been noted in other studies, these results from more complex five-species 
phytoplankton communities emphasize the potential challenges with extrapolating 
complex dynamics in diverse systems from experimental designs that use lower levels of 
diversity than would be found in natural systems (64–66).

Beyond our work with these specific taxa of phytoplankton and bacteria, most studies 
in aquatic systems have probed for trends between bacterial diversity and phytoplank­
ton productivity and diversity using correlative surveys in natural systems, which are 
challenging for inferring causation and have yielded varied results (67–70). However, one 
study of aquatic mesocosms that manipulated nutrients to create a productivity gradient 
found that bacterial richness was indeed inversely correlated with host species richness, 
as was found in our study (71). Overall, although several field and lab-based ecologi­
cal studies have documented significant correlations between phytoplankton primary 
productivity and diversity and bacterial diversity, the shape of these relationships has 
varied across studies and may be context dependent on bacterial taxa.

In contrast to these more inconclusive findings in aquatic ecosystems, there is 
substantial evidence in vertebrates that diversity within host microbiomes tends to 
promote host health (72–74). Furthermore, in human microbiomes, which have been 
studied more exhaustively than most natural ecosystems, clear associations have been 
found between depleted diversity within gut and skin microbiomes and the incidences 
of diseases and biomarkers of reduced health (75–78). In contrast with this existing 
literature, there are several potential explanations for why microbiome diversity did not 
promote host population growth in our study. First, most studies evaluating the role 
of standing microbiome diversity in promoting host health are testing resilience to a 
challenge with a specific host-pathogen, whereas we measured host health metrics 
in a closed system without specifically introducing known pathogens (74, 75, 79). 
Furthermore, it is conceivable, that compared to axenic conditions, even the micro­
bial communities comprising our low-diversity treatment were sufficiently diverse to 
facilitate host health and population growth. For example, phytoplankton microbiomes 
can promote the bioavailability of N through the fixation of atmospheric nitrogen. While 
certain bacterial taxa known for their capacity to fix N, such as the Azospirillaceae, were 
restricted to only medium and high diversity treatments, other such taxa, including 
the Rhizobiales, were common in the low diversity treatment. If sufficient functional 
benefits are provided by the low diversity treatment, any additional gain of diversity 
may have increased the likelihood of exposure to host pathogens, resulting in a relative 
reduction in host population growth. Lastly, our lack of evidence that higher microbiome 
diversity promotes host population growth could have been due to the tendency for 
many ecological interaction types to be difficult to detect due to context dependency. 
This context dependency is particularly true for synergistic interactions, which may be 
especially common within syntrophic bacterial communities, compared to antagonistic 
interactions (80, 81).

Microbiome diversity effects on ecosystem nutrient cycling

We also found that microbiome diversity was positively correlated with the concentra­
tion of total dissolved nitrogen and phosphorus in the water column. In combination 
with our isotopic evidence that high microbiome diversity decreased phytoplankton 
stress but did not increase phytoplankton biomass or cell density, we can infer that 
phytoplankton may have been most limited by resources other than CO2, N, and P. 
In addition to the remineralization of N and P, bacteria are known to facilitate the 
acquisition of iron, cobalamin, and other B vitamins for their phytoplankton hosts (19). 
Any effects that microbiome diversity may have on nutrient bioavailability could be 
directly mediated by bacteria, but could also be an indirect consequence of the effects 
of the microbiome on phytoplankton abundance. An alternative explanation is that while 
greater microbiome diversity enhances nutrient cycling, these more diverse bacterial 
communities could also be more capable of greater resource extraction that could result 
in stronger competition between bacteria and phytoplankton for limiting resources. 
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Regardless of the underlying mechanism, it is clear that the diversity of host-associated 
microbiomes can have wide-ranging implications on not only host cell physiology but 
also broader ecological and ecosystem processes.

Limitations and future directions

We evaluated how microbiome diversity affects multiple tiers of biological organiza­
tion scaling from the individual host to ecosystem-level nutrient cycling. We showed 
that microbiome diversity can indeed have significant effects across these scales, 
particularly in abiotically stressful environments. Examining mechanistically why the 
effects of microbiome diversity are magnified in abiotically stressful environments, for 
example through the use of gene expression and metabolomic analyses, is a necessary 
future direction that could address how host-microbiome interactions shift across stress 
gradients. Future work could also aim to investigate the effects of microbiome diver­
sity at a higher resolution than the three-tiered treatment used in this study. Ideally, 
such diversity treatments would be modeled after classic studies in plant community 
ecology that have demonstrated how plant diversity regulates ecosystem function with 
the use of substitutive designs that avoid confounding diversity with composition 
(82–84). However, taking an analogous experimental approach would be exceedingly 
challenging with the taxonomic richness of natural microbial systems, such as the 141 
taxa found in our study, which far exceeds the number of taxa manipulated in these 
classic studies (i.e., typically a maximum of 24 taxa). Furthermore, considering that the 
vast majority of bacteria cannot be isolated in pure culture, such experiments would 
likely need to balance the benefits of a substitutive design with the advantages of 
replicating the extensive bacterial diversity found in most natural systems. For example, 
although we have generated a collection of over 350 bacterial isolates from these 
phytoplankton microbiomes, over 75% are rare members that each comprise <1% of 
their respective phycosphere community (22). Despite this limitation, it is important to 
note that taxonomic composition varied substantially within each level of our micro­
biome treatment. For example, zero of the 49 different ASVs found across our low-diver­
sity samples were ubiquitous across all flasks in the low-diversity treatment. While it 
is challenging to conclusively infer the absence from genetic sequencing data due to 
limited sequencing depth and the natural rarity of many bacterial taxa, we have likely 
overestimated the taxonomic similarity across flasks within each diversity level because 
we needed to pool biological replicates to obtain sufficient volumes for sequencing. 
Therefore, although distinct from the controlled designs of classic plant community 
ecology experiments, we were able to employ two independent methods to quantify 
bacterial diversity (sequencing and flow cytometry) that, combined, illustrated that 
our microbiome diversity treatment was effective in testing a wide range of bacterial 
community compositions within each tier of our microbiome diversity treatment.

A limitation of our study was that we only evaluated microbiome diversity and 
composition at the beginning and end of our 6-week experiment. Furthermore, while 
we have well-replicated measures of bacterial diversity at the end of the study via flow 
cytometry, our replication for our sequencing results was more limited. Still, by pairing 
these sequencing data with our use of a multifactorial and gradient-based approach 
for our experimental design, we were still able to draw upon multiple replicates within 
each of our three main treatments to make robust conclusions about the effects of each 
treatment on bacterial taxonomic composition. For example, by using a gradient-based 
approach for our phosphorus treatment, we were able to see a clear ordered shift in 
bacterial community composition that matched the ordered shift in lake trophic status 
from oligotrophic through hyper-eutrophic conditions. Such gradient-based experimen­
tal approaches are especially useful in illustrating the context-dependent effects of 
a treatment, such as microbiome diversity, across the wide-ranging environmental 
conditions that occur in nature (85). Still, future studies that track fine-scale variation 
in the microbiome, both over time and within treatment combinations, are needed to 
advance our understanding of how host microbiomes are maintained in environments 
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experiencing multiple abiotic stressors. Lastly, although our low microbiome diversity 
treatment did not remain fully axenic over the course of the 6-week study, these bacterial 
taxa largely originated from the same phycosphere communities found in the medium 
and high microbiome diversity treatments. By introducing a subset of taxa found in 
higher diversity treatments, each tier of the diversity treatment ultimately harbored a 
shared core of bacterial taxa originating from the phycosphere. Furthermore, despite this 
contamination, the three tiers of our microbiome diversity treatment were maintained 
through the end of the study, as quantified by flow cytometry and amplicon sequencing. 
More broadly, the implications of this low diversity condition are advantageous relative 
to a fully axenic condition because this adds to the biological relevance of the study 
by being more realistic of the variation in microbiome diversity that might be observed 
under natural conditions.

Conclusions

Anthropogenic disturbances are increasing in frequency and intensity, with lasting 
effects on both local and global patterns of biodiversity and in turn, ecosystem function 
(86). It is therefore essential to unravel the effects of anthropogenic disturbances in 
isolation and combination with shifting levels of prokaryotic diversity on host health and 
ecology. Considering the essential role that phytoplankton play as the primary producers 
of freshwater and marine systems, any effects of prokaryotic diversity on phytoplank­
ton fitness, population ecology, and patterns of diversity and coexistence would likely 
have cascading implications on other trophic levels (14). Indeed, our results show 
how microbiome diversity can influence N and P cycling, demonstrating the role that 
phytoplankton and their associated bacteria often play in regulating biogeochemical 
and ecosystem nutrient cycling. Therefore, declining diversity within host microbiomes 
can have wide-ranging implications not only for host physiology and fitness but also 
for cascading effects on host community dynamics and ecosystem-level nutrient cycling. 
Our results emphasize that the effects of microbiome diversity on host fitness through 
ecosystem function may often be magnified in environments experiencing multiple 
simultaneous stressors, suggesting that the maintenance of prokaryotic diversity may be 
an important element in the regulation of host and ecosystem health in the Anthropo­
cene.
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SUPPLEMENTAL FILES 
 
Text S1. Supplemental Materials and Methods: 

We use five-species phytoplankton communities in this study by drawing from our prior 
work to generate axenic (i.e., free of all bacteria) and xenic versions of: Chlorella sorokiniana, 
Coelastrum microporum, Monoraphidium minutum, Scenedesmus acuminatus, and Selenastrum 
capricornutum. We previously rendered each monoculture axenic using ultrasonication and 
fluorescence-activated single-cell sorting onto solid media and confirmed axenic status via 
fluorescence microscopy, attempted heterotroph isolation on R2A agar, and attempted 
amplification of the bacterial 16S rRNA gene fragment via colony PCR (1). 

Axenic monocultures were then used in a microbiome assembly study as described by 
Jackrel et al. 2021(2). In brief, initially axenic phytoplankton monocultures acquired freshwater 
bacterial communities when submerged in aquariums filled with pond water collected from the 
University of Michigan E. S. George Reserve’s (ESGR) long-term experimental pond facility in 
Pinckney, MI, USA. Established in 1988, these ponds were naturalized by adding vegetation 
from a local pond at the ESGR and currently harbor diverse communities of vegetation, 
invertebrates, and amphibians (2, 3). More specifically, 100 mL of high cell density 
monocultures for each species of phytoplankton were placed in 4 oz glass jars and sealed with 
3.0 μm filters that prevented phytoplankton cells from escaping, but allowed for the free 
exchange of phytoplankton exudates and bacteria. Separate jars for each species were incubated 
in water corresponding to each pond for 72 hours, allowing the exudates from each 
phytoplankton species to attract host-specific bacterial taxa. Xenic cultures from each jar were 
then used to establish stocks of phytoplankton with naturally recruited microbiomes 
corresponding to each pond. For the purposes of this current study, we obtained phytoplankton 
associated microbiomes from host monocultures that had assembled microbial communities from 
Pond 2 and Pond 3 (see map of experimental pond facility in Fig. S1a). These two ponds 
contained distinct bacterial communities, which resulted in phytoplankton monocultures 
recruiting distinct phycosphere communities from each pond based on 16S rRNA amplicon 
sequencing (Fig. S1b). These phytoplankton associated microbiomes were used in this study to 
inoculate our axenic phytoplankton communities with three levels of microbiome diversity. 
Lastly, while these microbiome communities undoubtedly contained non-bacterial microbes as 
would be expected for natural ecosystems, we focus all analyses described below on the bacterial 
fraction of the microbiome.  
 
Experimental Treatments 

We carried out a 3 x 4 x 2 multifactorial design to test for the independent and interactive 
effects of diversity within the host microbiome, lake phosphorus concentration, and water 
temperature on metrics spanning from host physiology to ecosystem nutrient cycling (Fig. 1). We 
had five biological replicates per unique treatment combination for a total of 120 flasks. Each 
flask contained 100 mL of sterile COMBO plankton growth media (4) at the corresponding 
phosphorus concentration and were inoculated with each of the five phytoplankton species to 
create an axenic community with a total cell density of ~ 12,000 cells/mL. We inoculated C. 
sorokiniana, C. microporum, M. minutum, and S. capricornutum at 2,000 cells/mL, however we 
inadvertently inoculated S. acuminatus at 3,798 cells/mL. These cell densities, determined via 
hemocytometer, were consistent for each flask and so this deviation for S. acuminatus should not 
bias interpretation of treatment effects. Further, larger phytoplankton cells will likely harbor a 



greater number of bacteria within their phycosphere (5). Therefore, in addition to reporting cell 
density of the inoculated community, we also calculated the approximate contribution of each 
phytoplankton species towards total phycosphere volume. To do this, we estimated cell shape of 
each species as an ellipsoid and calculated cell volumes using mean length, width and height 
using imaging flow cytometry data of axenic monocultures grown in hypereutrophic COMBO 
media at ambient temperature. From this approach, we infer that the total contribution towards 
phycosphere volume for each species was approximately 3.5% for C. sorokiniana, 25.2% for C. 
microporum, 3.5% for M. minutum, 61.1% for S. acuminatus and 6.7% for S. capricornutum. 

We created the microbiome diversity treatments as described in Fig. S2. For each of the 
five phytoplankton species, we grew three cultures: an axenic monoculture, a xenic monoculture 
with a microbiome recruited from Pond 2, and a xenic monoculture with a microbiome recruited 
from Pond 3, each in full strength COMBO media. These 15 stock monocultures were used to 
create phytoplankton associated bacterial filtrates from each of these phytoplankton 
monocultures via sonication and separation-by-centrifugation as described in our earlier work 
(2). Specifically, to dislodge bacteria from the mucilage of the phytoplankton microbiome, 
aliquots of each stock culture were gently sonicated on ice at 20% amplitude for 30 seconds, 
repeated three times with 1-minute rests between sonication, on a Fisherbrand Model 50 Sonic 
Dismembrator. To separate bacteria from the larger host cells, sonicated stock cultures were then 
centrifuged at 900 g for 15 minutes. We then filtered the supernatant containing the bacterial 
cells through a 3.0 μm 25 mm filter to remove any remaining phytoplankton cells. To inoculate 
axenic phytoplankton communities with freshwater bacteria found in association with each of the 
five host species, we pooled filtrates containing bacterial communities collected from each 
phytoplankton monoculture of each respective group (i.e., axenic, Pond 2 and Pond 3), as 
illustrated in Fig. S2. 
 For our phosphorus treatment, we used sterile plankton growth media, COMBO, that we 
modified to range from oligotrophic to hypereutrophic nutrient conditions (i.e., aquatic trophic 
status) by using the following percentages of the NaNO3 and K2HPO4 stock solutions: 10% of the 
NaNO3 and 0% of the K2HPO4 stock solutions for oligotrophic media; 10% of the NaNO3 and 
1% of the K2HPO4 stock solutions for mesotrophic media; 10% of the NaNO3 and 2% of the 
K2HPO4 stock solutions for eutrophic media; and 10% of the NaNO3 and 10% of the K2HPO4 
stock solutions for hypereutrophic media. We confirmed total dissolved phosphorus and nitrogen 
concentrations in each media type by storing 40 mL aliquots in pre-rinsed bottles at -20°C and 
sending for analysis at the Marine Chemistry Lab of the University of Washington’s School of 
Oceanography following the protocol by Valderrama 1981 (6). Specifically, we found that the 
total phosphorus concentrations of our starting media ranged from 5.0 µg/L for the oligotrophic 
media to 310 µg/L for the hyper-eutrophic media, which encompasses the range of total 
phosphorus documented in over 95% of lakes in the northeastern United States (7). A 10% media 
replenishment was completed once per week with the media type that corresponded to the 
designated trophic status of each flask.    
 All flasks were incubated at their corresponding temperature treatment on shaker tables 
set to 80 RPM and under 81 μE lighting with a 16:8 hour light-dark cycle with the spatial 
location of flasks randomized by microbiome diversity and phosphorus treatments. Heat mats 
were used to generate the elevated temperature treatment, resulting in average daytime 
temperatures of 28.8 ± 0.03°C SE through the duration of the study, which contrasted with the 
ambient treatment maintained at 23.0 ± 0.02°C SE. Our temperate treatments were monitored 
every ten minutes throughout the duration of the study, using Onset HOBO pendant 



temperature/light data loggers that were submerged in flasks of media alongside the flasks used 
in the study.  
 To minimize bacterial contamination, all inoculations and handling of flasks throughout 
the study, including sampling and media replenishments, were completed using aseptic technique 
in a ThermoScientific 1300 Series A2 biological safety cabinet. Precautions included opening 
only a single flask at a time and using 70% ethanol to sterilize all surfaces in between handling 
of each flask. 
 
Bacterial flow cytometry 

We used flow cytometry to determine bacterial phenotypic diversity at the end of the six-
week experiment for all 120 flasks. We sampled 1 mL per flask, which we preserved in 5 μL of 
25% glutaraldehyde, snap froze in liquid nitrogen and stored at -80°C until further use. 
Immediately before processing, samples were diluted to a 1:9 ratio with sterile milliQ water. We 
added 5 μL of the nucleic acid stain SYBR Green I to each sample, vortexed, and dark incubated 
for 20 minutes at 37°C. After incubation, we also added 100 μL or 10 μL of 123Count eBeads to 
each sample to determine total volume analyzed per sample. We processed samples on a BD 
FACSCanto II system (Becton Dickinson Biosciences, Franklin Lakes, New Jersey, USA) at the 
Salk Institute of Biological Studies Flow Cytometry Core Facility (La Jolla, California, USA). 
We analyzed flow cytometry data by gating the bacterial populations using the FITC-A and the 
PerCP-Cy5.5 fluorescence channels and quantified bacterial phenotypic diversity using the D2 
metric calculated with the Phenoflow analysis package in R (8).  
 
Bacterial amplicon sequencing  

To characterize the taxonomic composition of the inoculants (i.e., axenic, Pond 2 and 
Pond 3 filtrates) that were used to inoculate axenic phytoplankton communities with freshwater 
bacteria found in association with each of the five host species at the start of the experiment (T0), 
we collected biomass from ~500 mL of each inoculant onto 0.22 μm nitrocellulose filters, snap 
froze filters in liquid nitrogen, and stored at -80°C. Similarly, to characterize bacterial taxonomic 
composition at the end of the six-week experiment, we collected biomass onto 0.22 μm 
nitrocellulose filters, froze filters in liquid nitrogen, and stored at -80°C. For these Tf samples 
collected at the end of six weeks, we pooled our five biological replicates per treatment 
combination to obtain a total of 125 mL in volume per sample due to limited volume per flask. 
To collect this biomass from all five biological replicates onto a single filter, we poured each 
replicate into a sterile glass funnel on a vacuum manifold. For DNA extraction, all filters were 
then thawed and incubated for 60 minutes at 56°C in 30 μL proteinase K, 100 μL of ATL tissue 
lysis buffer and 300 μL AL lysis buffer sourced from Qiagen. Cells were then lysed by vortexing 
for 10 minutes and DNA was extracted and purified using a DNeasy Blood and Tissue Kit 
(Qiagen, Hilden, Germany). We then targeted the amplification of the V4 region of the 16S 
rRNA gene using the 515f/806r primer pair (9). The sequences for 515f and 806r are 5’-
GTGYCAGCMGCCGCGGTAA-3’ and 5’-GGACTACNVGGGTWTCTAAT-3’, respectively 
(10, 11). Amplicon products were multiplexed with a unique 12 bp sequence per sample and then 
combined in an equal amount creating the final amplicon pool. Amplicons were then cleaned 
using the Qiagen UltraClean PCR Clean-Up Kit following manufacturer’s instructions (Qiagen, 
Hilden, Germany). The final pool of 16S rRNA amplicon products were sequenced on an 
Illumina MiSeq instrument set to read a PE 150 cycle at the UCSD Institute for Genomic 
Medicine (San Diego, California, United States). 



Sequence reads were processed with the QIIME2 bioinformatics platform release 2020.8, 
which provides rapid, scalable and reproducible analysis of microbiome data (12). In brief, we 
demultiplexed our paired end libraries, quality filtered reads based on Q scores (--p-min-
quality=4 and --p-quality-window=3), trimmed off forward and reverse primers, and then 
denoised and generated Amplicon Sequence Variants (ASVs) using the DADA2 plugin (13). All 
merged reads were assigned taxonomy using SILVA 138, a reference database for 16S rRNA 
genes (14, 15). ASVs were globally aligned using MAFFT v7 (16) and a phylogenetic tree was 
built using FastTree v2.1.4 and a GTR-CAT model of rate heterogeneity (17). The R package 
phyloseq v1.36.0 was used to combine the ASV table, metadata, assigned taxonomic data, and 
the phylogenetic tree into a single, flexible object in R v4.1.1 (18, 19). We removed all ASVs 
that were classified as “Eukaryotes” and “Unassigned” at the Kingdom level, “Chloroplast” at 
the Order level, and “Mitochondria” at the Family level using the subset_taxa function in the 
phyloseq package. Further, to facilitate accurate interpretation of low biomass samples, we 
removed all ASVs from our study samples that were found in either the four no-template-control 
blanks and the four mock microbial community standard controls, which were prepared by and 
included in our sequencing lane by the UCSD Microbiome Core. This removed 83 ASVs from 
our full 16S dataset that we attribute to contamination during library preparation and/or 
sequencing, which has been shown to commonly cause significant bias for low-biomass samples 
(20). This resulted in a 16S dataset with 171 total ASVs across 27 samples (24 experimental 
flask samples and the three T0 inoculants) with a median depth of 13,999 bacterial reads (i.e. 
after removing algal chloroplast reads). For statistical analyses comparing the effects of our three 
treatments on bacterial composition and diversity, we filtered out the T0 inoculants samples, 
which resulted in a dataset with 141 ASVs and a median bacterial read depth of 13,655 prior to 
rarefaction. 

Lastly, ASV relative abundances were determined after rarefying using the rrarefy 
function in the vegan package. As would be expected, many of our samples in the low 
microbiome diversity treatment had exceedingly few sequence reads. Therefore, we rarefied two 
separate times with and without the low microbiome diversity treatment group. When retaining 
all three levels of microbiome diversity, we rarefied to 14 bacterial reads, whereas when 
retaining only the medium and high levels of microbiome diversity, we rarefied to 6,121 bacterial 
reads. We report mean ASV abundances for taxa found in each level of the microbiome diversity, 
phosphorus, and temperature treatments in Table S1. Using non-rarefied data, we created heat 
maps depicting change in log 10 abundance of all 171 ASVs recovered through this study using 
the comp_heatmap function in the microViz R package v. 0.12.4 (21). To quantify the percent 
contribution of potential source samples (e.g., T0 inoculants and experimental flasks) of 
sequences found in our low microbiome samples we used SourceTracker2 with default 
parameters (22) 

 
Phytoplankton community dynamics  

We tracked how phytoplankton cell counts varied by treatment over the duration of the 
study by preserving 1 mL from each flask with 5 μL of 25% glutaraldehyde and storing at 4°C. 
After weekly sampling, we also replaced 10% of the media with fresh media, abiding by the 
correct phosphorus-level media being added to each flask. We assessed phytoplankton cell 
density and species composition of all 120 experimental flasks at the end of the six-week study 
by counting either 400 cells or four hemocytometer grids (3.6 μL), whichever came first, of each 



phytoplankton species per sample (23). We also measured phytoplankton biomass at the end of 
the six-week study using the methods described below for stoichiometric analysis. 

 
Phytoplankton morphological analysis  

To determine how phytoplankton cell size varied by each unique treatment combination, 
two experimental flasks from each combination were randomly selected for analysis using image 
flow cytometry. From each flask, we preserved 1 mL of culture with 5 μL of 25% glutaraldehyde 
and stored at 4°C. Samples were processed using the Amnis ImageStreamX Mk II Flow 
Cytometer (Cytek Biosciences, Fremont, California, USA) with 60X objective in low speed/high 
sensitivity mode and 6-15 mW of 488 nm excitation. Acquisition stop criteria was set to 10 
minutes or 2,000 events. Cell size data was then processed with Amnis AI Software, which uses 
random forest and convolution neural networks to score data into the five training classes, one 
per phytoplankton species in our phytoplankton communities. Amnis AI Software requires a 
minimum of 120 ground truth images per training class which were sourced from monocultures 
of C. sorokiniana, C. microporum, S. acuminatus, and S. capricornutum. However, for M. 
minutum, ground truth images were manually tagged using Amnis IDEAS Software from a single 
polyculture with known abundances of the five phytoplankton species. The following feature 
parameters were then measured per phytoplankton species per sample: cell area (μm2), diameter 
(μm), height (μm), and perimeter (μm).  

 
Ecosystem nutrient cycling 

At the end of the six-week study, total dissolved nitrogen and total dissolved phosphorous 
remaining in spent growth media was measured in each of the 120 flasks again using the 
Valderrama 1981 protocol (6). We pelleted phytoplankton and bacterial cells in 50 mL of each 
culture at 6000 g for 10 minutes, transferred 40 mL of the supernatant to pre-rinsed bottles, and 
stored immediately at -20°C until processing at the Marine Chemistry Lab. 
 
Statistical analysis 
 To test whether bacterial phenotypic diversity, as measured via flow cytometry, varied 
across microbiome diversity treatments, we used our a priori ordered predictions to calculate a 
directional ANOVA using Spearman’s rank correlations (24). Using 16S amplicon data, we 
tested the relationship of bacterial community composition and phylogenetic membership with 
each experimental treatment. We first created a quantitative Jaccard and weighted UniFrac 
distance matrix from the rarefied ASV table. For each distance matrix, we implemented a 
distance-based redundancy analysis (db-RDA) for hypothesis testing. We then evaluated the 
statistical significance of each of the three main effects in our models: microbiome diversity 
treatment, phosphorus treatment and temperature treatment, using a permutational analysis of 
variance (permutations = 10,000) with the anova function in the stats package and the how 
function from the permute package (25, 26). Bacterial alpha diversity (e.g., ASV richness) was 
calculated with the d function from the vegetarian v.1.2 package for our T0 inoculants and each 
unique treatment combination sample that underwent amplicon sequencing. We used a multiple 
linear regression with bacterial alpha diversity predicted by our three treatments: microbiome 
diversity, phosphorus treatment, and temperature treatment, and an analysis of variance on that 
model for hypothesis testing (25, 26). Lastly, we illustrated the number of unique and shared 
common ASVs among the T0 inoculants and among the microbiome diversity treatments with a 
Venn diagram created by the function ggvenn within the R package ggvenn v.0.1.10 (27). Within 



each treatment group, proportional abundance per ASV was calculated by dividing the number of 
reads summed across samples by the total read depth within a treatment. ASVs within each group 
that had a proportional abundance <1%, and considered rare, were excluded from this 
comparison.  

In addition, we then used three-way analysis of variance to evaluate the independent and 
interactive effects of our three treatments on each of the following dependent variables: δ15N, 
δ13C, cell abundance of each of our five phytoplankton species, Shannon’s diversity of the 
phytoplankton community (as calculated in the vegan package), total dissolved nitrogen and total 
dissolved phosphorus. To examine significantly different pairwise comparisons within each level 
of our nutrient treatment, we subset data by trophic status, ran an analysis of variance that 
evaluated the independent and interactive effects of microbiome diversity and temperature on 
each response variable, and then conducted Tukey’s HSD tests using the TukeyHSD function in 
the stats package (25, 26) Significance is denoted by a compact letter display in our main text 
figures. To measure the effects of our treatments on phytoplankton cell morphology, we used a 
multiple linear regression and multivariate analysis of variance approach (MANOVA) using the 
manova function from the car package in R (28). Specifically, we modeled the collective 
outcome of mean cell area, mean cell diameter, mean cell height, and the mean cell perimeter as 
predicted by the phosphorus, microbiome diversity, and temperature treatments with 
phytoplankton species as an additional fixed effect, and interactions between all fixed effects. We 
also ran separate MANOVAs for each of the five phytoplankton species with fixed and 
interaction effects for our three treatments. 
  



Supplemental Figures: 
 

 
 

Figure S1. A) Aerial view of the naturalized experimental pond facility located at the University 
of Michigan E. S. George Reserve in Pinckney, MI, USA. B) As described in our prior work, the 
particle-associated bacterial communities inhabiting the water column of the two ponds used in 
this study were distinct (adonis: F1,35 = 11.7, p < 0.01, R2 = 0.13; Jackrel et al. 2020). Further, 
initially axenic phytoplankton hosts recruited a subset of bacterial taxa from these ponds and this 
recruitment was host-species specific (adonis: host - F3,35 = 10.5, p < 0.01, R2 = 0.56). In the 
present study, we expand on this work by using the same bacterial communities recruited by 
these five monocultures of phytoplankton from Pond 2 and Pond 3 to create our microbiome 
diversity treatments and to inoculate our axenic phytoplankton communities at the beginning of 
this study.    
 
  



 
Figure S2. An illustration of the approach used to create the three levels of our microbiome 
diversity treatment that were then inoculated into the 120 flasks at the start of this experiment 
(T0). This illustration was created using BioRender.  
  



 
Figure S3. Heat map illustrating bacterial log 10 abundance at the ASV level for each T0 
inoculant containing Axenic, Pond 2, and Pond 3 bacterial communities that were used to create 
our microbiome diversity treatments, following Fig. S2. Columns correspond to each sample 
from our 16S rRNA data set, while rows correspond to bacterial families. The left side of the 
heatmap is flanked by a dendrogram depicting hierarchical clustering. Non-rarefied abundances 
were used and are represented in this figure due to low read depth within our axenic inoculant. 
Note that the axenic inoculant contained lower read depth and similar taxonomic richness than 
our no-template-control blanks (see Table S1), and was likely bacterial free. The sequence reads 
that do appear in our axenic inoculant are common genera found in human gut microbiomes (30) 
and are likely an artifact of sequencing low biomass samples on a shared instrument (20).  



 
Figure S4. Venn diagram describing the shared number of ASVs and shared read depths among 
the three T0 inoculants that were used to create our microbiome diversity treatments, following 
Fig. S2. A) When common and rare ASVs were examined, 15 ASV and 74.27% of total reads 
were shared among the two inoculants, while the axenic inoculant shared no ASVs with Pond 2 
or Pond 3 inoculants. B) When only common ASVs were examined (>1% in proportional 
abundance within an inoculant), the number of shared and unique ASVs substantially drop and 
only 4 ASVs were shared among the two pond inoculants with 60.92% of total reads shared.  
  



 
Figure S5. In our low microbiome diversity flasks (n = 8), medium and high microbiome 
diversity flasks accounted for, on average, 58.62% and 19.75% of source contamination 
according to Bayesian SourceTracker2. In addition, Pond 2 and Pond 3 inoculants accounted for 
1.69% and 8.66% of source contamination, while the axenic inoculant, PCR blanks, and Zymo 
mock communities contributed 0% to low microbiome diversity flasks. We have determined that 
the unknown source of ASV found in the third flask from the left, which is our lowest biomass 
sample (read depth of 14) out of the low microbiome diversity flasks, is a common genus of the 
human gut microbiome, Bifidobacterium, and is likely an artifact from sequencing on a shared 
instrument. We have included it here for full transparency. See Table S2 for a full 
SourceTracker2 summary of the proportional contributions from source samples. 
  



 
 
Figure S6. We have constructed a directed acyclic graph (DAG) illustrating hypothesized causal 
pathways from our three treatments, microbiome diversity, temperature, and phosphorus to 
ecosystem factors and host factors that we measured in this study. Single arrows are shown in 
black and branching arrows are shown in shades of gray. Double-headed arrows indicate 
bidirectional effects. For simplicity, we have combined phytoplankton biomass and cell density 
as “Phytoplankton Biomass” within this diagram as they represent a similar host factor. This 
conceptual diagram outlines direct causal paths that have influenced the way in which we model 
and interpret our results at the end of our six-week experiment. For example, our microbiome 
diversity treatment affects phytoplankton biomass, morphology, and phytoplankton δ15N and 
δ13C, but is conditional on bacterial microbiome diversity. Similarly, our DAG illustrates that by 
the end of our six-week study, the phosphorus treatment affected total nitrogen in media through 
the mediation by bacterial microbiome diversity. We can infer this as each experimental unit 
included in this study was a closed system and received the same starting concentration of 
nitrogen. 
  



 
Figure S7. At the end of the six-week study, we detected significant differences in bacterial 
taxonomic diversity among our microbiome diversity treatments when amplicon data was A) not 
rarefied (F2,17=61.68, p<0.001), B) rarefied to the lowest number of reads among all three 
microbiome treatments (14 reads; F2,17=6.52, p<0.01), and C) rarefied to lowest number of reads 
between medium and high microbiome treatments (6,121 reads; F1,10=5.82, p<0.05).  
  



 
Figure S8. Among medium and high microbiome diversity treatments, bacterial community 
composition was significantly influenced by the level of microbiome diversity and by 
phosphorous treatments, represented as colors and shapes respectively. Amplicon data 
represented in this figure was rarefied to the lowest number of bacterial reads among these two 
groups (6,121 reads). Two db-RDAs were built using the A) quantitative Jaccard and B) 
weighted UniFrac distance metric and both were analyzed with a permutational analysis of 
variance (10,000 permutations) to uncover the effects of our treatments on bacterial community 
composition and phylogenetic membership (quantitative Jaccard: microbiome diversity: 
F1,10=8.15, p<0.0001; phosphorus: F3,10=2.75, p<0.01; weighted UniFrac: microbiome diversity: 
F1,10=9.59, p<0.0001; phosphorus: F3,10=4.44, p<0.001). Our temperature treatment did not have 
an effect on microbiome community composition (quantitative Jaccard: F1,10=1.78, p>0.05; 
weighted UniFrac: F1,10=1.11, p>0.05).  

  



 
Figure S9. Heat map illustrating bacterial log 10 abundance at the family level for each unique 
combination of our three treatments. Columns correspond to each sample from our 16S rRNA 
data set, while rows correspond to bacterial families. T0 inoculants containing Axenic, Pond 2, 
and Pond 3 bacterial communities that were used to create our microbiome diversity treatments, 
following Fig. S2, are represented as the three columns on the far right. The left side of the 
heatmap is flanked by a dendrogram depicting hierarchical clustering. Non-rarefied abundances 
were used and are represented in this figure due to low read depth within the low microbiome 
diversity treatment.  
  



 
Figure S10. Taxonomic heat map illustrating change in bacterial log abundance at the ASV level 
across each unique treatment combination. Columns correspond to each sample from our 16S 
rRNA data set. T0 inoculants containing Axenic, Pond 2, and Pond 3 Bacterial Communities that 
were used to create our microbiome diversity treatments, following Fig. S2, are represented as 
the three columns on the far right. Taxonomic annotation on the right side of the heat map 
displays the bacterial family, genus, species, and ASV number from our study. If an ASV was 
unclassified at the family level, then only the ASV number is denoted as a row name. ASVs that 
are not classified at the Genus or species level display the bacterial family and ASV number. The 
dendrogram on the left of the heat map illustrates hierarchical clustering. Non-rarefied 
abundances were used and are represented in this figure due to low read depth within the low 
microbiome diversity treatment.   



 
Figure S11. Cell morphological plasticity across our phosphorus, microbiome and temperature 
treatments quantified using imaging flow cytometry. The mean ± SE of a) cell area, b) cell 
perimeter, c) cell diameter, and d) cell height are reported for each of our five species of 
phytoplankton. Multiple analysis of variance tests were ran using all four of these metrics for the 
whole five-species community of phytoplankton and for each of the five species independently. 
MANOVA tables are reported as Tables S4 – S9. 
  



 
Figure S12. Trophic state, as determined by phosphorus concentration, was the dominant driver 
of total phosphorus in spent media, while microbiome diversity was a significant but secondary 
driver of total N and P concentrations at the end of the six-week study. Total P concentrations 
were measured of the supernatant from cultures that were pelleted to remove phytoplankton and 
bacterial cells. ANOVA total phosphorus - microbiome diversity: F2,87=12.45, p<0.0001, 
phosphorus: F3,87=173.25, p<0.0001, temperature: F1,87=0.12, p=0.73. See Table S18-S19 for 
ANOVA tables and main text Fig. 6 for results across all nutrient treatments. Pairwise 
comparisons were made within each level of the nutrient treatment, in this case the oligotrophic 
environment, and statistically similar comparisons are denoted by letters. 
  



Supplemental Tables:  
 
Table S1. A summary table describing ASV richness and bacterial read depth across our T0 
samples (i.e., Axenic, Pond 2, and Pond 3 inoculants), four no-template-control PCR blanks, and 
the four-sample dilution series of a ZymoBiomic Microbial Community Standard that were 
included in our 16S rRNA sequencing run at UCSD Institute for Genomic Medicine.  

 ASV Richness Read Depth 
Axenic Inoculant 14 147 
Pond 2 Inoculant 37 18,874 
Pond 3 Inoculant 42 19,245 

PCR Blank 1 14 489 
PCR Blank 2 12 360 
PCR Blank 3 11 557 
PCR Blank 4 20 869 

Zymo PCR 0.01 30 1,837 
Zymo PCR 0.1 10 16,169 
Zymo PCR 1.0 12 22,435 
Zymo PCR 10.0 8 19,406 

  



Table S2. Summary table from SourceTracker2 with proportional ASV contribution from 
potential source samples (rows) to low microbiome diversity (MD) flasks (sink; columns).  

 
  



Table S3. Mean relative abundance of each ASV for all experimental treatments. Rows are 
individual ASVs with taxonomic assignment from the SILVA 138 database. Non-rarefied 
abundances shown due to low read depth within the low microbiome diversity treatment. 

  



Table S4. Three-way ANOVA for the mean δ13C of dried phytoplankton biomass of the five-
species phytoplankton community at the end of the six-week experiment.   

  DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 20.7 10.34 11.958 2.45E10-5 

P 3 553 184.35 213.252 < 2E10-16 
T 1 3.7 3.68 4.252 0.04205 

P*T 3 2.3 0.78 0.898 0.44562 
P*Micro. Div. 6 18.8 3.13 3.615 0.00292 
T*Micro. Div. 2 3.1 1.54 1.783 0.17402 

P*T*Micro. Div. 6 9.6 1.6 1.85 0.09802 
Residuals 91 78.7 0.86     

 
 
Table S5. Three-way ANOVA for the mean δ15N of dried phytoplankton biomass of the five-
species phytoplankton community at the end of the six-week experiment. 

  DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 49.2 24.61 25.751 1.37E10-9 

P 3 598.6 199.52 208.767 < 2E10-16 
T 1 52.2 52.22 54.637 6.83E10-11 

P*T 3 16.8 5.6 5.861 0.00105 
P*Micro. Div. 6 76.5 12.74 13.335 8.68E10-11 
T*Micro. Div. 2 9 4.48 4.688 0.01155 

P*T*Micro. Div. 6 7.2 1.19 1.249 0.28906 
Residuals 91 87 0.96     

 
 
 
Table S6. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of phytoplankton cells found within the five-species phytoplankton community at the 
end of the six-week experiment.    

DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 
Micro. Div. 2 0.9168 2.15 8 388 0.03045 

P 3 0.5662 10.26 12 513.57 < 2E-16 
T 1 0.9115 4.71 4 194 1.20E-03 

Phytoplankton Species 4 0.0007 353.34 16 593.32 < 2E-16 
P*T 3 0.9012 1.72 12 513.57 0.05996 

P*Micro. Div. 6 0.8752 1.1 24 678 0.33693 
T*Micro. Div. 2 0.9716 0.7 8 388 0.68893 

P*T*Micro. Div. 6 0.9277 0.61 24 678 0.92578 
 
 
 
  



Table S7. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of Chlorella sorokiniana cells found within the five-species phytoplankton community 
at the end of the six-week experiment.   
 DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 

Micro. Div. 2 0.33548 3.2692 8 36 0.006664 
P 3 0.05268 8.1536 12 47.915 4.72E-08 
T 1 0.2456 13.8223 4 18 2.53E-05 

P*T 3 0.32233 2.1325 12 47.915 0.032087 
P*Micro. Div. 6 0.19181 1.6143 24 64.005 0.066264 
T*Micro. Div. 2 0.45471 2.1733 8 36 0.053504 

P*T*Micro. Div. 6 0.20638 1.5254 24 64.005 0.092099 
 
 
 
 
Table S8. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of Coelastrum microporum cells found within the five-species phytoplankton 
community at the end of the six-week experiment.   
 DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 

Micro. Div. 2 0.65816 1.105 8 38 0.381509 
P 3 0.05746 8.1901 12 50.561 2.91E-08 
T 1 0.68837 2.1503 4 19 0.114045 

P*T 3 0.17577 3.9152 12 50.561 0.000294 
P*Micro. Div. 6 0.28214 1.2296 24 67.493 0.250082 
T*Micro. Div. 2 0.64219 1.1778 8 38 0.337588 

P*T*Micro. Div. 6 0.17933 1.3806 24 67.493 0.151427 
 
 
 
 
Table S9. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of Monoraphidium minutum cells found within the five-species phytoplankton 
community at the end of the six-week experiment.   
 DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 

Micro. Div. 2 0.41471 2.7642 8 40 0.01568 
P 3 0.05099 9.2214 12 53.207 2.92E-09 
T 1 0.26345 13.9792 4 20 1.35E-05 

P*T 3 0.40924 1.7812 12 53.207 0.07557 
P*Micro. Div. 6 0.20634 1.194 24 70.982 0.27737 
T*Micro. Div. 2 0.71357 0.9191 8 40 0.5111 

P*T*Micro. Div. 6 0.4547 0.7496 24 70.982 0.78278 
 
 
 
 
  



Table S10. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of Scenedesmus acuminatus cells found within the five-species phytoplankton 
community at the end of the six-week experiment. Since all equal factorial comparisons could 
not be made within S. acuminatus, interaction effects were excluded from the multiple linear 
regression to avoid singularities. 
 DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 

Micro. Div. 2 0.2884 6.2501 8 58 8.19E-06 
P 3 0.06677 11.4332 12 77.018 9.25E-13 
T 1 0.4064 10.5894 4 29 2.53E-05 

 
 
 
 
Table S11. Multivariate Analysis of Variance examining the mean area, diameter, height, and 
perimeter of Selenastrum capricornutum cells found within the five-species phytoplankton 
community at the end of the six-week experiment.   
 DF Wilks' Λ Approx F Num DF Den DF Pr (>F) 

Micro. Div. 2 0.44241 2.6431 8 42 0.019188 
P 3 0.7624 7.6583 12 55.852 3.87E-08 
T 1 0.30169 12.152 4 21 2.86E-05 

P*T 3 0.17349 4.3695 12 55.852 7.07E-05 
P*Micro. Div. 6 0.09428 3.0031 24 74.47 0.000155 
T*Micro. Div. 2 0.39908 3.0606 8 42 0.008319 

P*T*Micro. Div. 6 0.13244 2.4362 24 74.47 0.001861 
 
 
 
 
Table S12. Three-way ANOVA for mean dried phytoplankton biomass of the five-species 
phytoplankton community at the end of the six-week experiment.  

  DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 6.268E10-5 3.134E10-5 51.982 6.27E10-16 

P 3 6.970E10-6 2.324E10-6 3.855 0.0119 
T 1 1.490E10-6 1.487E10-6 2.467 0.1196 

P*T 3 2.040E10-6 6.810E10-7 1.129 0.3413 
P*Micro. Div. 6 2.579E10-5 4.298E10-6 7.129 2.79E10-6 
T*Micro. Div. 2 6.200E10-7 3.090E10-7 0.512 0.6009 

P*T*Micro. Div. 6 2.510E10-6 4.180E10-7 0.694 0.6549 
Residuals 94 5.667E10-5 6.030E10-7     

 
 
 
 
 
  



Table S13. Three-way ANOVA for the mean log total phytoplankton cell density of the five-
species phytoplankton community at the end of the six-week experiment.   

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 0.358 0.179 3.65 0.029657 

P 3 21.178 7.059 144.134 < 2E10-16 
T 1 2.92 2.92 59.613 1.1E10-11 

P*T 3 1.132 0.377 7.704 0.000115 
P*Micro. Div. 6 1.074 0.179 3.655 0.002601 
T*Micro. Div. 2 0.009 0.004 0.087 0.916949 

P*T*Micro. Div. 6 0.213 0.035 0.724 0.631394 
Residuals 96 4.702 0.049     

 
 
 
 
Table S14. Three-way ANOVA for the mean Shannon Diversity of the five-species 
phytoplankton community at the end of the six-week experiment.   

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 0.29 0.1449 4.204 0.01778 

P 3 4.612 1.5373 44.596 < 2E10-16 
T 1 0.001 0.0012 0.035 0.85136 

P*T 3 0.271 0.0904 2.623 0.05497 
P*Micro. Div. 6 0.614 0.1023 2.967 0.01061 
T*Micro. Div. 2 0.41 0.2048 5.941 0.00369 

P*T*Micro. Div. 6 0.429 0.0716 2.077 0.063 
Residuals 96 3.309 0.0345     

 
 
 
 
Table S15. Three-way ANOVA for the mean log cellular abundance of Chlorella sorokiniana at 
the end of the six-week experiment.  

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 79.92 39.96 105.451 < 2E10-16 

P 3 21.41 7.14 18.829 1.21E10-9 
T 1 2.24 2.24 5.918 0.01688 

P*T 3 5.15 1.72 4.529 0.00519 
P*Micro. Div. 6 3.66 0.61 1.609 0.15312 
T*Micro. Div. 2 0.42 0.21 0.548 0.58012 

P*T*Micro. Div. 6 7.57 1.26 3.329 0.00512 
Residuals 94 35.62 0.38     

 
 
 
 
  



Table S16. Three-way ANOVA for the mean log cellular abundance of Coelastrum microporum 
at the end of the six-week experiment.  

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 2.92 1.459 4.184 0.018101 

P 3 59.25 19.749 56.653 < 2E10-16 
T 1 3.7 3.702 10.62 0.001548 

P*T 3 0.01 0.003 0.008 0.99904 
P*Micro. Div. 6 8.87 1.478 4.24 0.000789 
T*Micro. Div. 2 0.04 0.018 0.052 0.949126 

P*T*Micro. Div. 6 3.98 0.664 1.904 0.087993 
Residuals 96 33.47 0.349     

 
 
 
 
Table S17. Three-way ANOVA for the mean log cellular abundance of Monoraphidium minutum 
at the end of the six-week experiment.  

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 0.98 0.49 1.351 0.2638 

P 3 0.03 0.01 0.029 0.99342 
T 1 33.78 33.78 93.055 8.55E10-16 

P*T 3 3.61 1.2 3.314 0.02324 
P*Micro. Div. 6 7.83 1.31 3.595 0.00294 
T*Micro. Div. 2 0.5 0.25 0.684 0.50718 

P*T*Micro. Div. 6 8.47 1.41 3.89 0.00161 
Residuals 96         

 
 
 
 
Table S18. Three-way ANOVA for the mean log cellular abundance of Scenedesmus acuminatus 
at the end of the six-week experiment.  

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 3.03 1.51 1.692 0.189592 

P 3 195.64 65.21 72.96 < 2E10-16 
T 1 11.59 11.59 12.962 0.000508 

P*T 3 0.72 0.24 0.27 0.846723 
P*Micro. Div. 6 25.29 4.21 4.715 0.000304 
T*Micro. Div. 2 0.26 0.13 0.144 0.865845 

P*T*Micro. Div. 6 4.18 0.7 0.78 0.587681 
Residuals 95 84.91 0.89     

 
 
 
 
  



Table S19. Three-way ANOVA for the mean log cellular abundance of Selenastrum 
capricornutum at the end of the six-week experiment. 

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 16.44 8.22 11.252 4.62E10-5 

P 3 4.63 1.54 2.112 0.104666 
T 1 45.98 45.98 62.954 7.67E10-12 

P*T 3 7.85 2.62 3.584 0.017069 
P*Micro. Div. 6 10.74 1.79 2.451 0.031071 
T*Micro. Div. 2 13.56 6.78 9.281 0.000226 

P*T*Micro. Div. 6 4.24 0.71 0.967 0.452805 
Residuals 85 62.08 0.73     

 
 
 
 
Table S20. Three-way ANOVA for mean total nitrogen in the phytoplankton media at the end of 
the six-week experiment.   

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 580050 290025 14.745 2.91E10-6 

P 3 7843724 2614575 132.931 < 2E10-16 
T 1 43799 43799 2.227 0.139248 

P*T 3 262701 87567 4.452 0.005865 
P*Micro. Div. 6 494709 82451 4.192 0.000947 
T*Micro. Div. 2 28868 14434 0.734 0.483001 

P*T*Micro. Div. 6 104378 17396 0.884 0.509906 
Residuals 87 1711179 19669     

 
 
 
 
Table S21. Three-way ANOVA for mean total phosphorus in the phytoplankton media at the end 
of the six-week experiment.   

 DF Sum Sq Mean Sq F value Pr (>F) 
Micro. Div. 2 2.47 1.234 12.452 1.75E10-5 

P 3 51.50 17.167 173.25 < 2E10-16 
T 1 0.01 0.012 0.119 0.73116 

P*T 3 0.64 0.213 2.153 0.09932 
P*Micro. Div. 6 1.90 0.317 3.197 0.00696 
T*Micro. Div. 2 0.35 0.175 1.762 0.17770 

P*T*Micro. Div. 6 0.86 0.144 1.449 0.20557 
Residuals 87 8.62 0.099     
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