
Nature Microbiology

nature microbiology

https://doi.org/10.1038/s41564-023-01575-9Brief Communication

microbeMASST: a taxonomically informed 
mass spectrometry search tool for microbial 
metabolomics data

microbeMASST, a taxonomically informed mass spectrometry (MS) 
search tool, tackles limited microbial metabolite annotation in untargeted 
metabolomics experiments. Leveraging a curated database of >60,000 
microbial monocultures, users can search known and unknown MS/MS 
spectra and link them to their respective microbial producers via MS/MS 
fragmentation patterns. Identification of microbe-derived metabolites 
and relative producers without a priori knowledge will vastly enhance the 
understanding of microorganisms’ role in ecology and human health.

Microorganisms drive the global carbon cycle1 and can establish symbi-
otic relationships with host organisms, influencing their health, aging 
and behaviour2–6. Microbial populations interact with different eco-
systems through the alteration of available metabolite pools and the 
production of specialized small molecules7,8. The vast genetic potential 
of these communities is exemplified by human-associated microorgan-
isms, which encode ~100 times more genes than the human genome9,10. 
However, this metabolic potential remains unreflected in modern untar-
geted metabolomics experiments, where typically <1% of the annotated 
molecules can be classified as microbial. This problem particularly 
affects mass spectrometry (MS)-based untargeted metabolomics, a 
common technique to investigate molecules produced or modified by 
microorganisms11, which famously struggles with spectral annotation 
of complex biological samples. This is because most spectral reference 
libraries are biased towards commercially available or otherwise acces-
sible standards of primary metabolites, drugs or industrial chemicals. 
Even when metabolites are annotated, extensive literature searches 
are required to understand whether these molecules have microbial 
origins and to identify the respective microbial producers. Public data-
bases, such as KEGG12, MiMeDB13, NPAtlas14 and LOTUS15, can assist in this 
interpretation, but they are mostly limited to well-established, largely 
genome-inferred metabolic models or to fully characterized and pub-
lished molecular structures. In addition, while targeted metabolomics 
efforts aimed at interrogating the gut microbiome mechanistically have 
been developed16, these focus only on relatively few commercially avail-
able microbial molecules. Hence, the majority of the microbial chemi-
cal space remains unknown despite the continuous expansion of MS 
reference libraries. To fill this gap, we have developed microbeMASST 
(https://masst.gnps2.org/microbemasst/), a search tool that leverages 

public MS repository data to identify the microbial origin of known 
and unknown metabolites and map them to their microbial producers.

microbeMASST is a community-sourced tool that works within 
the GNPS ecosystem17. Users can search tandem MS (MS/MS) spec-
tra obtained from their experiments against the GNPS/MassIVE 
repository and retrieve matching samples exclusively acquired from 
extracts of bacterial, fungal or archaeal monocultures. No other avail-
able resource or tool allows linking uncharacterized MS/MS spectra to 
characterized microorganisms. The microbeMASST reference data-
base of microbial monocultures has been generated through years 
of community contributions and metadata curation, and it contains 
microorganisms isolated from plants, soils, oceans, lakes, fish, ter-
restrial animals and humans (Fig. 1a). All available microorganisms 
have been categorized according to the NCBI taxonomy18 at different 
taxonomic resolutions (that is, species, genus, family and so on) or 
mapped to the closest taxonomically accurate level, if no NCBI ID 
was available at the time of database creation. As of September 2023, 
microbeMASST includes 60,781 liquid chromatography (LC)–MS/MS 
files comprising >100 million MS/MS spectra mapped to 541 strains, 
1,336 species, 539 genera, 264 families, 109 orders, 41 classes and 16 
phyla from the three domains of life: Bacteria, Archaea and Eukaryota 
(Fig. 1b). Different from MASST19, which uses a precomputed net-
work of ~110 million MS/MS spectra to enable spectral searching, 
microbeMASST is based on the recently introduced Fast Search Tool 
(https://fasst.gnps2.org/fastsearch/)20. This tool, originally designed 
for proteomics, drastically improves search speed by several orders 
of magnitude by indexing all the MS/MS spectra present in GNPS/
MassIVE and restricting the search space to the user input param-
eters. Because of this, search results are returned within seconds 
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pipelines using the standard outputs (.mgf) of already established 
data processing tools, such as MZmine23.

In the microbeMASST web app (https://masst.gnps2.org/microbe-
masst/), users can search single MS/MS spectra and obtain matching 
results from the reference database of microbeMASST, providing either 
a USI or a precursor ion mass and its spectral fragmentation pattern 
(Supplementary Fig. 1). Analogue search can also be enabled to discover 
molecules related to the MS/MS spectrum of interest across the taxo-
nomic tree17,19,24. The microbeMASST web app displays query results in 
interactive taxonomic trees, which can be downloaded as HTML files. 
Nodes in the trees represent specific taxa and display rich information, 

as opposed to 20 min per search or 24–48 h for modification toler-
ant searches in the original implementation of MASST. In addition, 
microbeMASST leverages pre-curated file-associated metadata to 
aggregate results into easy-to-interpret taxonomic trees. This repre-
sents a major enhancement over MASST, where users have to manually 
inspect results tables and contextualize them, making interpretations 
tedious. Finally, users can leverage microbeMASST Python code to 
perform batch searches of thousands of MS/MS spectra by providing 
either a formatted MS/MS file (.mgf) or a list of Universal Spectrum 
Identifiers (USIs)21, which represent paths to spectra in public data-
sets22. This is particularly useful for creating integrated data analysis 
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Fig. 1 | The microbeMASST search tool and reference database. a, Community 
contributions of data and knowledge to GNPS17, ReDU57 and MassIVE from 2014 to 
2022 were used to generate the microbeMASST reference database. In addition, a 
public invitation to deposit data in June 2022 resulted in the further deposition of 
LC–MS/MS files from 25 different laboratories from 15 different countries across 
the globe, leading to the curation of a total of 60,781 LC–MS/MS files of microbial 
monoculture extracts. b, microbeMASST comprises 1,858 unique lineages across 
three different domains of life mapped to 541 unique strains, 1,336 species, 
539 genera, 264 families, 109 orders, 41 classes and 16 phyla. c, Examples of 
medically relevant small molecules known to be produced by bacteria or fungi. 
Lovastatin, a cholesterol-lowering drug originally isolated from Aspergillus 

genus25; salinosporamide A, a Phase III candidate to treat glioblastoma produced 
by Salinispora tropica27; and commendamide, a human G-protein-coupled 
receptor agonist28. d, microbeMASST search outputs of the three different 
molecules of interest confirm that they were exclusively found in monocultures 
of the only known producers. Pie charts display the proportion of MS/MS 
matches found in the deposited reference database. Blue indicates a match with 
a monoculture, while yellow represents a non-match. Searches were performed 
using MS/MS spectra deposited in the GNPS reference library: lovastatin 
(CCMSLIB00005435737), salinosporamide A (CCMSLIB00010013003) and 
commendamide (CCMSLIB00004679239). GNPS, ReDU and microbeMASST 
logos reproduced under a Creative Commons license CC BY 4.0.
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such as taxon scientific name, NCBI taxonomic ID, number of deposited 
sample data files, number of sample data files containing a match to 
the queried spectrum, within the user search criteria, and a proportion 
of the number of sample data files matching the queried spectrum to 
the number of total available sample data files for that specific taxon 
in the reference database of microbeMASST. This proportion is also 
visualized through pie charts. Information for an MS/MS match in a 
particular taxon is propagated upstream through its lineage. The reac-
tive interface of microbeMASST enables filtering of the tree to specific 
taxonomic levels or to a minimum number of matches observed per 
taxon. In addition, three data tables are generated, linking the search 
job to other resources in the GNPS/MassIVE ecosystem. For example, 
each MS/MS query is also searched against the public MS/MS reference 
library of GNPS (587,213 MS/MS spectra, September 2023) to provide 
spectra annotations when available. The annotations to reference 
compounds are listed under the ‘Library matches’ tab (Supplementary  
Fig. 2a). The ‘Datasets matches’ tab contains information on the match-
ing scans, displaying scientific name, NCBI taxonomic ID and taxo-
nomic rank, number of matching fragment ions and modified cosine 
score together with a link to a mirror plot visualization (Supplementary 
Fig. 2b). Finally, the ‘Taxa matches’ tab informs on how many matches 
were found per taxon and the number of samples available for that 
taxon (Supplementary Fig. 2c). Quality controls (QCs) and blank sam-
ples (n = 2,902) present in the reference datasets of microbeMASST 
have been retained to provide information on possible contaminants 
and media components. In addition, data from human cell line cultures 
(n = 1,199) have been included to enable assessment of whether mol-
ecules can be produced by both human hosts and microorganisms. It 
is important to point out that microbeMASST allows linking of both 
partly annotated, through MS/MS match to reference library spectra, 
and fully uncharacterized spectra to possible microbial producers 
but that technical limitations inherent to mass spectrometry or the 
experiment itself are present. For example, the absence of a match-
ing spectrum in a specific taxon does not necessarily indicate that 
it is not capable of producing the searched molecule but rather that 
the methodology used to acquire the data did not allow its detection. 
These and other limitations are described in Methods. Despite these 
limitations, microbeMASST can uniquely enable the discovery of links 
between uncharacterized MS/MS spectra and defined microorganisms, 
providing valuable information for future mechanistic studies.

Search results for lovastatin, salinosporamide A and commen-
damide MS/MS spectra highlight how microbeMASST can correctly 
connect microbial molecules to their known producers (Fig. 1c). In the 
case of lovastatin, a clinically used cholesterol-lowering drug originally 
isolated from Aspergillus terreus25, spectral matches were unique to 
the genus Aspergillus (Fig. 1d). The MS/MS spectrum for salinospora-
mide A, a Phase III candidate to treat glioblastoma26, only matched 
two strains of Salinispora tropica (Fig. 1d), the only known producer27. 
Commendamide, first observed in cultures of Bacteroides vulgatus 
(recently reclassified as Phocaeicola vulgatus), is a G-protein-coupled 
receptor agonist28. Surprisingly it had many matches to several bacte-
rial cultures, including in Flavobacteriaceae (Algibacter, Lutibacter, 
Maribacter, Polaribacter, Postechiella and Winogradskyella) and Bac-
teroides cultures (Fig. 1d). Additional examples include searches of 
mevastatin, arylomycin A4, yersiniabactin, promicroferrioxamine, and 
the microbial bile acid conjugates29–31 glutamate-cholic acid (Glu-CA) 
and glutamate-deoxycholic acid (Glu-DCA) (Supplementary Fig. 3). 
Mevastatin, another cholesterol-lowering drug originally isolated 
from Penicillium citrinum32, was only found in samples classified as 
fungi. The antibiotic arylomycin A4 was observed in different Strep-
tomyces species, and it was originally isolated from Streptomyces sp. 
Tue 6075 in 200233. Yersiniabactin, a siderophore originally isolated 
from Yersinia pestis34 whose monoculture is not yet present in the 
reference database of microbeMASST, was observed in Escherichia 
coli and Klebsiella species, consistent with previous observations35,36. 

Promicroferrioxamine, another siderophore, was observed to match 
Micromonospora chokoriensis and Streptomyces species. This mol-
ecule was originally isolated from an uncharacterized Promicromono-
sporaceae isolate37. The MS/MS spectrum of the gut microbiota-derived 
Glu-CA, an amidated tri-hydroxylated bile acid, was most frequently 
observed in cultures of Bifidobacterium species, while Glu-DCA was 
found only in one Bifidobacterium strain but also in two Enterococcus 
and Clostridium species. None of the molecules were found in cultured 
human cell lines, highlighting the ability of microbeMASST to distin-
guish MS/MS spectra of molecules that can be exclusively produced 
by either bacteria or fungi. It is important to acknowledge that MS/MS 
data generally do not differentiate stereoisomers, but it can neverthe-
less provide crucial information on molecular families.

microbeMASST can be also used to extract microbial information 
from mass spectrometry-based metabolomics studies without any 
a priori knowledge. To illustrate this, we reprocessed an untargeted 
metabolomics study with data acquired from 29 different organs and 
biofluids comprising tissues including brain, heart, liver, blood and 
stool of germ-free (GF) mice and mice harbouring microbial com-
munities, also known as specific pathogen-free (SPF) mice30 (Fig. 2a). 
We extracted 10,047 consensus MS/MS spectra uniquely present in 
SPF mice and queried them with microbeMASST. A total of 3,262 MS/
MS spectra were found to have a microbial match to the microbe-
MASST reference database. Of these, 837 were also found in human cell 
lines and for this reason were removed from further analysis. Among 
the remaining 2,425 MS/MS spectra, 1,673 were exclusively found in 
bacteria, 95 in fungi and 657 in both (Supplementary Fig. 4). These 
MS/MS spectra were then processed with SIRIUS38 and CANOPUS39 
to tentatively annotate the metabolites and identify their chemical 
classes. A file containing all these spectra of interest can be explored 
and downloaded in .mgf format from GNPS (see Methods). To further 
validate the microbial origin of these MS/MS spectra, we assessed their 
overlap with data acquired from a different study comparing SPF mice 
treated with a cocktail of antibiotics to untreated controls40. Interest-
ingly, 621 MS/MS spectra were also found in this second dataset and 512 
were only present in animals not treated with antibiotics (Fig. 2b). The 
distribution of these spectra and their putative classes across bacterial 
phyla was visualized using an UpSet plot41 (Fig. 2c). Notably, most of 
the spectra classified as terpenoids were commonly observed across 
phyla, while amino acids and peptides appeared to be more phylum 
specific. Of these 512 spectra, 23% had a level 2 putative annotation 
according to the 2007 Metabolomics Standards Initiative42, matching 
the GNPS reference library (Supplementary Table 1). A level 2 annota-
tion within the user-specified search criteria might result in MS/MS 
matches between molecules belonging to related families as opposed 
to unique molecules. Annotations included the recently described 
amidated microbial bile acids19,29–31,43–48, free bile acids originating 
from the hydrolysis of host-derived taurine bile acid conjugates49, keto 
bile acids formed via microbial oxidation of alcohols30, N-acyl-lipids 
belonging to a similar class of metabolites as commendamide28  
(a microbial N-acyl lipid), di- and tri- peptides seen in microbial diges-
tion of proteins50, and soyasapogenol, a by-product of the microbial 
digestion of complex saccharides from dietary soyasaponins30. Part 
of the remaining unannotated spectra can be identified as chemical 
modifications of the above annotated microbial metabolites through 
spectral similarity obtained from molecular networking (Supplemen-
tary Fig. 5). This list of annotated MS/MS spectra included metabolites 
that are not yet widely considered to be of microbial origins, such as 
the di- and tri-hydroxylated bile acids and the glycine-conjugated bile 
acids43. One interpretation of these findings is that microorganisms are 
capable of producing metabolites previously described to be only of 
mammalian origins. Notable examples of metabolites that have been 
established to be produced by both the mammalian host and bacteria 
include serotonin51, γ-aminobutyric acid (GABA)52 and most recently, 
glycocholic acid43,53–55. In addition, an alternative hypothesis is that 
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microorganisms can also selectively stimulate the production of host 
metabolites. Other limitations regarding annotations are discussed 
in Methods. To assess whether the observations from the mouse mod-
els translate to humans, we searched and found that 455 out of the 
512 MS/MS spectra of interest matched public human data (Fig. 2d). 
Interestingly, these spectra were found in both healthy individuals and 
individuals affected by different diseases, including type II diabetes, 

inflammatory bowel disease, Alzheimer’s disease and other conditions. 
These spectra were most commonly found in stool samples (n = 110,973 
MS/MS matches), followed by blood, breast milk and the oral cavity, 
as well as other organs including the brain, skin, vagina and biofluids 
(for example, cerebrospinal fluid and urine) (Fig. 2e). These findings 
support the concept that a substantial number of microbial metabolites 
reach and influence distant organs in the human body56.
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Fig. 2 | microbeMASST can identify microbial MS/MS spectra within mouse 
and human datasets. a, Workflow to extract microbial MS/MS spectra from 
biochemical profiles of 29 different tissues and biofluids of SPF mice that are 
not observed in GF mice30. The MS/MS spectra unique to SPF mice (10,047) were 
searched with microbeMASST. A total of 3,262 MS/MS spectra had a match; those 
MS/MS also matching human cell lines were removed, leaving a total of 2,425 
putative microbial MS/MS spectra (see Methods to download .mgf file).  
b, The presence of the 2,425 MS/MS spectra was evaluated in an additional animal 
study looking at antibiotic usage40. A total of 512 MS/MS spectra, out of the 621 
overlapping, were exclusively found in animals not receiving antibiotics. c, UpSet 
plot of the distribution of the detected MS/MS spectra (512) across bacterial 
phyla. Terpenoids were more commonly observed across phyla, while amino 

acids and peptides appeared to be more phylum specific. d, The 512 MS/MS 
spectra were searched in human datasets and 455 were found to have a match. 
These MS/MS spectra were present in both healthy individuals and individuals 
affected by different diseases. e, Most of the MS/MS spectra (n = 411) matched 
faecal samples (n = 110,973 matches), followed by blood, oral cavity, breast milk, 
urine and several other organs. CSF, cerebral spinal fluid; COVID-19, coronavirus 
disease 2019; HIV, human immunodeficiency virus; PBI, primary bacterial 
infectious disease; SD, sleep disorder; AD, Alzheimer’s disease; IS, ischaemic 
stroke; KD, Kawasaki disease; IBD, inflammatory bowel disease; T2D, type II 
diabetes. GNPS and and microbeMASST logos reproduced under a Creative 
Commons license CC BY 4.0; SIRIUS logo reproduced under a Creative Commons 
license CC BY 4.0-ND.
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We anticipate that microbeMASST will be a key resource to 
enhance understanding of the role of microbial metabolites across 
a wide range of ecosystems, including oceans, plants, soils, insects, 
animals and humans. This expanding resource will enable the scientific 
community to gain valuable taxonomic and functional insights into 
diverse microbial populations. The mass spectrometry community will 
play a key role in the evolution of this tool in the future through the con-
tinued deposition of data associated with microbial monocultures and 
the expansion of spectral reference libraries. Moreover, microbeMASST 
holds potential for various applications ranging from aquaculture 
and agriculture to biotechnology and the study of microbe-mediated 
human health conditions. By harnessing the power of public data, we 
can unlock opportunities for advancements in multiple fields and 
deepen our understanding of the intricate relationships between 
microorganisms and their ecosystems.

Methods
Data collection and harmonization
Data deposited in GNPS/MassIVE were investigated manually and sys-
tematically using ReDU57 (https://redu.ucsd.edu/) to extract all pub-
licly available MS/MS files (.mzML or .mzXML formats) acquired from 
monocultures of bacteria, fungi, archaea and human cell lines. Only 
monocultures were included in the reference database of this search 
tool to unequivocally associate the production of the detected metabo-
lites to each specific taxon. A total of 60,781 files from 537 different 
GNPS/MassIVE datasets were selected to be used as the reference data-
base of microbeMASST (Supplementary Table 2). These include files 
deposited in response to our call to the scientific community. Between 
May and July 2022, 25 different research groups deposited 65 distinct 
datasets in GNPS/MassIVE, comprising a total of 3,142 unique LC–MS/
MS files. This represented a 5.45% increase in publicly available MS/
MS data acquired from monocultures in just 2 months. To qualify as a 
contributor and be credited as one of the authors, researchers had to 
deposit high-resolution LC–MS/MS data acquired either in positive or 
negative ionization modes from monocultures of either bacteria, fungi or 
achaea. Harmonization of the acquired data and metadata represented 
a challenge. The NCBI taxonomic database is constantly expanding and 
evolving, and the ReDU latest update (December 2021) does not accom-
modate the latest deposited taxa. For this reason, an additional metadata 
file (microbeMASST_metadata_massiveID) was generated specifically for 
the microbeMASST project and uploaded to the respective GNPS/Mas-
sIVE datasets deposited by the collaborators if the ReDU workflow failed. 
All the collected information was finally aggregated in a single .csv file 
(microbe_masst_table.csv) that can be found on GitHub, which contains: 
(1) full MassIVE path of each sample, (2) file name of each sample reported 
as its MassIVE ID/file name to avoid the presence of duplicated names, (3) 
MassIVE ID, (4) taxonomic name of the isolate as reported by the author 
submitting the associated metadata, (5) alternative taxonomic name if 
the provided taxonomic name was incorrect or not present in NCBI, (6) 
associated NCBI ID to the taxonomic name or the alternative taxonomic 
name, when present, (7) definition if the taxonomic ID was automatically 
assigned or manually curated, and information if (8) ReDU metadata are 
available for that specific file and if the file correspond to a (9) blank or 
(10) QC rather than a unique biological sample.

Unique taxonomic names and NCBI IDs were extracted from the 
metadata associated with the selected samples. When metadata were 
not available and multiple species of bacteria or fungi were present 
in the same dataset, samples were generically classified as bacteria 
or fungi. Concordance between taxonomic names and NCBI IDs was 
checked by blasting taxonomic names against NCBI (https://www. 
ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi) to 
obtain respective NCBI IDs and updated taxonomic names. Results 
were manually investigated and missing IDs were recovered using the 
NCBI browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/ 
wwwtax.cgi). If the taxonomic name was not found in NCBI, most 

probably because it was not deposited yet, the NCBI of the closest 
taxon was retrieved and used. For example, the strain Staphylococcus 
aureus CM05 was unavailable in NCBI and was curated to the species 
Staphylococcus aureus instead.

Taxonomic tree generation
The microbeMASST taxonomic tree was generated using both R 4.2.2 
and Python 3.10. In R, the microbeMASST table was filtered and only 
unique NCBI IDs were retained (n = 1,834). The classification function 
of the ‘taxize’ package (v.0.9.100) was used to retrieve the full lineage 
of each NCBI ID58. Main taxonomic ranks (kingdom to strain) plus sub-
genus, subspecies and varieties were kept to obtain taxonomic trees 
with a similar number of nodes per lineage. The list of NCBI IDs of all 
lineages was then imported to Python, where the ETE3 toolkit was used 
to generate a taxonomic tree on the basis of the provided NCBI IDs59. 
The generated Newick tree was then converted into JSON format and 
information such as taxonomic rank and number of available samples 
per taxon was added. In addition, children nodes for blanks and QCs 
were created to be visualized in the same tree.

MASST query
The microbeMASST web application was built using Dash and Flask 
open-source libraries for Python (https://github.com/mwang87/ 
GNPS_MASST/blob/master/dash_microbemasst.py). The web app 
can receive as inputs either a USI or an MS/MS spectrum (fragment 
ions and their intensities). In addition, batch searches can be per-
formed using a customizable Python script that can read either a .tsv 
file containing a list of USIs or a single .mgf file (https://github.com/ 
robinschmid/microbe_masst). Through the manuscript, we show-
case how we were able to search for more than 10,000 MS/MS spectra 
contained in a single .mgf file (~2 h run time). After receiving input 
information, microbeMASST leverages the Fast Search Tool (https://
fasst.gnps2.org/fastsearch/) API and the sample-specific associated 
metadata to generate taxonomic trees. Fast searches are based on 
indexing all the MS/MS spectra present in GNPS/MassIVE according 
to the mass and intensity of their precursor ions and then restricting 
the search to only a set of relevant spectra that have a greater chance 
of achieving a high spectral similarity (modified cosine score) to the 
MS/MS of interest. Searches are customizable and default settings 
are the following: precursor and fragment ion mass tolerances, 0.05; 
minimum cosine score threshold, 0.7; minimum number of matching 
fragment ions, 3; and analogue search, False. Users can modify these 
parameters on the basis of their data and research questions. Once 
matches are obtained, it is good practice to inspect the associated 
mirror plots for confirmation. To create the final taxonomic tree, the 
JSON file of the complete microbeMASST taxonomic tree is filtered 
according to the results and converted into a D3 JavaScript object that 
can be visualized as an HTML file.

Applications
We envision microbeMASST to have several applications. First, we 
showcase how researchers can investigate single MS/MS spectra 
using the web interface and obtain matching results if their known 
or unknown MS/MS spectrum was previously observed in any of the 
microbial monocultures present in the microbeMASST database. Nine 
small molecules of interest were investigated using MS/MS spectra 
already deposited in the GNPS reference library (see ‘Data availability’ 
and ‘Code availability’). Second, we show how microbeMASST can 
be leveraged to mine for known or unknown microbial metabolites 
in MS studies. To test this hypothesis, we reprocessed an LC–MS/MS 
dataset acquired from 29 different organs and biofluids of GF and SPF 
mice30. A comprehensive molecular network was generated (https:// 
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=893fd89b52dc4c07a29 
2485404f97723). From the obtained job, the qiime2 artefact (qiime2_
table.qza), the .mgf file (METABOLOMICS-SNETS-V2-893fd89b- 
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download_clustered_spectra-main.mgf) containing all the captured 
MS/MS spectra, and the annotation table (METABOLOMICS-SNETS-V
2-893fd89b-view_all_annotations_DB-main.tsv) were extracted. The 
.qza file was first converted into a .biom file and then a .tsv file using 
QIIME2 (ref. 60) to extract the feature table. This was then imported 
to R where only spectra present in tissues and biofluids of SPF ani-
mals were retained (n = 10,047). To add an extra layer of filtering, all  
MS/MS spectra that had an edge (cosine similarity >0.7) and a delta 
parent ion mass of ±0.02 Da with MS/MS spectra present in GF animals 
were removed. Spectral pairs information was contained in a net-
workedges_selfloop file. All the MS/MS spectra were then run in batch 
using a custom Python script of microbeMASST (processing time: ~2 h, 
Apple M2 Max, 64 GB RAM) to obtain microbial matches. Matching 
and filtered MS/MS spectra (n = 2,425) were aggregated into a single 
.mgf file that can be downloaded from GNPS (https://gnps.ucsd.edu/ 
ProteoSAFe/status.jsp?task=aecd30b9febd43bd8f57b88598a05553). 
The compound class of each MS/MS spectrum with parent ion mass 
<850 Da was predicted using SIRIUS38 and CANOPUS39. The 2,425 MS/
MS spectra were then searched against the MSV000080918 dataset 
containing mice treated or not with antibiotics40. Matching and filtered 
MS/MS spectra (n = 512) were aggregated into a single .mgf file that 
can be downloaded from GNPS (https://gnps.ucsd.edu/ProteoSAFe/ 
status.jsp?task=c33855fc32c948049331e9730189d5c1). A list of the 
spectra with putative chemical class classification is available in Sup-
plementary Table 1. Venn diagrams and UpSet plots were generated in R 
using VennDiagram 1.7.3, UpSetR 1.4.0 and ComplexUpset 1.3.3. Finally, 
the 512 MS/MS spectra were searched in batch against the GNPS public 
repository to observe whether they were detected in human datasets 
(Supplementary Table 3). ReDU metadata information associated with 
the human datasets was then used to observe the distribution of the 
MS/MS spectra across different diseases and body parts.

Technical limitations
Analysis of the results should be considered with the following limi-
tations in mind. Molecule detection in microbeMASST is dependent 
on the availability of specific substrates in the reference monocul-
tures. If the culture lacks the necessary substrates (or any other cul-
ture condition) to produce a certain molecule, this molecule will not 
be detected. Nevertheless, if related substrates are present, then 
a different but related molecule may be produced instead, which 
can be detected using the analogue search function. To address this 
problem, it is crucial for the community to continue to gather data 
from as many diverse experimental conditions as possible to cap-
ture the full range of metabolites produced by different microorgan-
isms. This will help in building the most comprehensive reference 
database that encompasses diverse microbial metabolic profiles. In 
addition, isomers and stereoisomers, which are molecules with the 
same molecular formula but different structural arrangements, often 
exhibit similar MS/MS spectra. This means that their fragmentation 
patterns may not provide enough information to distinguish them. 
Finally, differences in extraction conditions and instrument settings 
can lead to variations in the obtained MS/MS spectra. For example, 
the intensity of precursor ions used for fragmentation can impact the 
resulting spectra. If the precursor ion intensity is low, the fragmented 
spectrum may lack ions that are present in spectra obtained from 
high-intensity precursor ions. This may result in ‘data leakage’ as the 
MS/MS spectrum may be missing ions, leading to the two molecules 
not being recognized as the same molecule. To partially overcome 
this, more permissive settings can be created. The majority of the 
data deposited in public repositories, GNPS included, and used in 
microbeMASST were acquired using positive electrospray ioniza-
tion mode, which limits the observation of molecules that cannot be 
ionized in positive mode. This means that certain metabolites may 
be underrepresented or not detected at all. The continuous cura-
tion of the microbeMASST reference database involves adding more 

diverse data in terms of ionization modes to improve the coverage 
of metabolites. The taxonomic tree was generated using associated 
NCBI IDs provided by the community. Specimen assignment before 
metabolomic analysis cannot be checked by microbeMASST. The 
majority of the deposited data do not have associated genetic informa-
tion and even if available, it was not used to build the taxonomic tree. 
Thus, specimen misidentification cannot be excluded. By addressing 
these challenges and continuously curating the reference database 
with more comprehensive and diverse data, microbeMASST coverage 
can be expanded to provide valuable insights into the role of micro-
biota and to facilitate our understanding of microbial metabolism in  
diverse ecosystems.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized. The Investigators were not blinded to allocation during experi-
ments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used to generate the reference database of microbeMASST are 
publicly available at GNPS/MassIVE (https://massive.ucsd.edu/). A 
list of all the accession numbers (MassIVE IDs) of the studies used to 
generate the reference database of this tool is available in Supplemen-
tary Table 2. Interactive examples of the MS/MS queries illustrated in  
Fig. 1d and Supplementary Fig. 3 can be visualized at the microbeMASST 
website (https://masst.gnps2.org/microbemasst/). A video tutorial on 
how to use microbeMASST is available on YouTube. Known molecules 
already present in the GNPS library (https://library.gnps2.org/) were 
used to facilitate interpretation and confirm that specific bacterial and 
fungal molecules of interest were exclusively observed in the respec-
tive monocultures.
 Lovastatin - CCMSLIB00005435737
 Salinosporamide A - CCMSLIB00010013003
 Commendamide - CCMSLIB00004679239
 Mevastatin - CCMSLIB00005435644
 Arylomycin A4 - CCMSLIB00000075066
 Yersiniabactin - CCMSLIB00005435750
 Promicroferrioxamine - CCMSLIB00005716848
 Glutamate-cholic acid (Glu-CA) - CCMSLIB00006582258
 Glutamate-deoxycholic acid (Glu-DCA) - CCMSLIB00006582092
Data used to extract MS/MS spectra exclusively present in colonized 
(SPF) mice are publicly available in GNPS/MassIVE under the accession 
number MSV000079949. Data used to validate and assess antibiotics 
effect on microbial MS/MS spectra of interest are available under the 
accession number MSV000080918. A list of datasets with data acquired 
from human biosamples that presented matches to the putative micro-
bial MS/MS spectra of interest is available in Supplementary Table 3.

Code availability
The microbeMASST code to query spectra, create interactive trees and 
analyse results is available under an open-source license on GitHub 
(https://github.com/robinschmid/microbe_masst). This repository 
also contains code to run batch searches of thousands of MS/MS spec-
tra by providing either a .tsv file containing a list of USIs or a .mgf file 
generated for example through the MZmine data processing pipe-
line. Code used to generate the microbeMASST web interface can be 
accessed on GitHub (https://github.com/mwang87/GNPS_MASST). 
Code used to perform the analysis and generate the figures presented 
in the manuscript can be downloaded from GitHub (https://github.
com/simonezuffa/Manuscript_microbeMASST).
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