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ABSTRACT Host microbiomes are important regulators of organismal fitness, physiol
ogy, and ecology. Microbiomes promote the fitness of their host in part by buffering 
the host from the full effects of fluctuating conditions and stressors imposed by the 
external environment. Whether the host conversely serves as a buffer for their associ
ated microbes against variation in the external environment is less clear. Here, we 
test if bacteria inhabiting the microbiome of a host are locally adapted to nutrient 
levels in their surrounding external environment. We used a system in which the 
host, the phytoplankter Microcystis aeruginosa, has strains that are locally adapted to 
low-nutrient versus high-nutrient lakes. Assessing 40 metagenome-assembled genomes 
belonging to four taxonomic groups of heterotrophic bacteria residing within the host 
microbiome, we found consistent phylogenetic divergence between strains originating 
from low-nutrient versus high-nutrient environments. Bacteria found in association with 
low-nutrient host genotypes obtained from low-nutrient lakes demonstrated genome 
streamlining, including reduced genome size and fewer sigma factors. These bacterial 
genomes have features that would facilitate survival in low-nutrient lakes, including 
(i) greater number of alkaline phosphatase genes that are essential for phosphorus 
acquisition and (ii) positive selection within genes involved in phosphorus metabo
lism. Overall, our results demonstrate that despite living in close association with 
host organisms, bacteria residing within microbiomes may have evolved and under
gone environmental selection to stressors external to their host, demonstrating similar 
patterns of adaptation to those that might be expected to develop among free-living 
bacteria.

IMPORTANCE Understanding how natural selection has historically shaped the traits 
of microbial populations comprising host microbiomes would help predict how the 
functions of these microbes may continue to evolve over space and time. Numerous 
host-associated microbes have been found to adapt to their host, sometimes becom
ing obligate symbionts, whereas free-living microbes are best known to adapt to 
their surrounding environment. Our study assessed the selective pressures of both 
the host environment and the surrounding external environment in shaping the 
functional potential of host-associated bacteria. Despite residing within the resource-
rich microbiome of their hosts, we demonstrate that host-associated heterotrophic 
bacteria show evidence of trait selection that matches the nutrient availability of their 
broader surrounding environment. These findings illustrate the complex mix of selective 
pressures that likely shape the present-day function of bacteria found inhabiting host 
microbiomes. Our study lends insight into the shifts in function that may occur as 
environments fluctuate over time.
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R ecent discoveries have revealed the significance of the host-associated microbiome 
as a key regulator of host fitness, physiology, and health (1–5), with cascading 

implications for host ecology and regulation of ecosystem function (6–9). In particular, 
a number of studies have demonstrated that microbiomes promote host fitness by 
buffering the host against the full effects of fluctuating environmental conditions, thus 
mitigating the effects of environmental stressors on the host (10, 11). However, there has 
been less study of the converse effect, in which a host buffers its associated microbes 
against variation in the external environment. Advancing our understanding of the 
selective pressures shaping bacterial populations that inhabit the microbiome is needed 
to predict how microbiome community composition and the function of host-associated 
microbes may fluctuate over space and time. Therefore, we aim to elucidate the role of 
the host in buffering variation in the external environment among bacteria inhabiting 
the host microbiome.

Host-associated microbes vary considerably in lifestyle—from those associated with 
the external surfaces of their hosts to obligate endosymbionts—so, it is useful to 
consider how selective pressures act on bacteria with lifestyles at the extremes of the 
free-living versus host-associated gradient. Free-living microbes are directly exposed to 
fluctuations in environmental conditions, including variation in temperature, pH, salinity, 
and the concentration of bioavailable nutrients. Such free-living microbes inhabit soils, 
sediments, air and the water columns of marine and freshwater ecosystems where 
these taxa are critical regulators of biogeochemical cycles (12, 13). Prior studies have 
documented a remarkable capacity of free-living microbes to adapt to conditions of their 
surrounding environment, such as extreme resource efficiency among Prochlorococcus 
inhabiting the low-nutrient open ocean (14). At the opposite extreme of the free-living 
versus host-associated gradient are obligate endosymbionts that have evolved reduced 
genomic complexity and are fully dependent on the resources supplied by their host 
(15). Such obligate endosymbionts are vertically transmitted over host generations, with 
minimal exposure to the external environment.

We focus instead on host-associated microbes intermediate to these two extremes of 
free-living versus obligate endosymbionts. Such host-associated microbes experience 
their surrounding environment through a buffering by their host, often inhabiting 
microenvironments that are more stable and have relatively benign conditions relative to 
the stressors of the free-living external environment (16). These host-associated microbes 
may inhabit the surfaces of animals, the root rhizosphere and leaf phyllosphere of 
terrestrial plants, and the phycosphere of eukaryotic and cyanobacterial phytoplankton. 
Such host-associated microbes typically become reliant on exudates, such as sugars and 
other byproducts of photosynthesis, from a phototrophic host. These host-associated 
microbes inhabiting the external surfaces of their host and horizontally transmitted 
symbionts may also move more readily than obligate endosymbionts between the 
host and the external environment (17). Selective pressures from the external environ
ment have the potential to influence host–microbe interactions, as demonstrated in 
experimental evolution studies with Vibrio fischeri that inhabit both the open ocean 
and the light organ of their squid host. In this system, adaptation to harsh pH and 
temperature conditions was shown to significantly alter host–microbe symbioses (18, 
19). Understanding whether such adaptation to the external environment is pervasive 
among host-associated microbiomes in a natural setting could clarify the importance of 
the external environment in shaping host–microbiome interactions.

Few studies have directly evaluated whether host-associated microbes retain 
signatures of selective pressure from their external environment, much like-free living 
microbes. Elucidating this potential role of the external environment would advance 
our understanding of host–microbiome interactions by building upon prior studies that 
have demonstrated the capacity for host-associated microbes to evolve to the microen
vironment created by their host, as well as for microbiomes to buffer environmental 
fluctuations for the host and thus reduce the pressure for host evolutionary adaptations 
(20). Considering the recent increase in awareness of the critical role that host-associated 
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microbes play in regulating host behavior, physiology, fitness, and ecology, it is essential 
to understand the breadth of pressures that can drive the population dynamics of 
host-associated microbes. Here, we evaluate whether microbes inhabiting the host 
microbiome are shaped more so by the resource-rich microenvironment of the host 
microbiome or a resource-poor external environment.

We investigate whether the phosphorus concentration of freshwater lakes is a 
selective pressure driving the genomic makeup of heterotrophic bacterial populations 
that reside within the microbiome of the harmful, bloom-forming cyanobacterium, 
Microcystis aeruginosa. This cyanobacterium forms clonal colonies containing as many 
as 105 individual cells (21). Embedded within the mucosal polysaccharide matrix that 
binds these host cells together is a diverse community of heterotrophic bacteria 
that compose the phytoplankton microbiome or phycosphere (16). We had previously 
collected colonies of M. aeruginosa, which were repeatedly washed to reduce free-living 
and loosely associated microbes and retain the most closely associated microbes. These 
colonies were collected from 14 freshwater lakes that vary over 20-fold in phosphorus 
levels, which is the primary limiting nutrient in freshwater ecosystems (22).

Previous analysis of M. aeruginosa metagenome-assembled genomes (MAGs) across 
this phosphorus gradient revealed clear adaptation of the hosts to their corresponding 
environment, with strains inhabiting low-nutrient lakes demonstrating greater resource-
use efficiency and increased capacity for acquiring phosphorus relative to strains 
inhabiting high-nutrient lakes. We also previously documented strains that were more 
closely related to those from low-nutrient lakes, yet residing within high-nutrient lakes, 
potentially taking advantage of low-nutrient microenvironments within high-nutrient 
lakes (22). Such low-nutrient microenvironments within high-nutrient lakes are known 
to develop in lakes experiencing phytoplankton blooms. As these blooms persist for 
multiple months, the phytoplankton deplete bioavailable nutrients in the water column 
to low levels (23, 24), thereby providing an available niche for low-nutrient-adapted 
genotypes of M. aeruginosa and their associated heterotrophic bacteria. We previously 
described three genotypes of M. aeruginosa, namely, low-nutrient lake/low-nutrient 
genotype (LL/LG), high-nutrient lake/high-nutrient genotype (HL/HG), and high-nutrient 
lake/low-nutrient genotype (HL/LG). We continue the use of this terminology for 
consistency with our prior work (22), where we found that the heterotrophic bacte
ria within this microbiome demonstrated metabolic interdependence with their host. 
Specifically, metagenomic analysis indicated that hosts are reliant on their ubiquitously 
associated Aquidulcibacter spp. to biosynthesize the amino acids threonine, serine, and 
asparagine, whereas Aquidulcibacter spp. derives a significant source of energy from 
galactose, the primary component of the polysaccharide matrix that binds together 
colonies of M. aeruginosa [note that Aquidulcibacter spp. was referred to as Phycosocius 
bacilliformis in Jackrel et al. (22)]. These heterotrophic symbionts, including Aquidul
cibacter spp., typically remain in association with M. aeruginosa in batch cultures 
maintained in the laboratory (22).

Here, we use this system as a model to investigate whether heterotrophic bacte
ria inhabiting host microbiomes show evolutionary signatures of adaptation to their 
surrounding environment. Considering that phytoplankton recruit bacteria into their 
microbiome from their surrounding environment, there may remain signatures of 
selection among host-associated bacteria to these external environmental pressures. We 
assessed 40 metagenome-assembled genomes of four taxonomic groups of hetero
trophs found within the microbiomes of three genotypes of M. aeruginosa hosts (the 
low-nutrient LL/LG, the intermediate HL/LG, and the classic high-nutrient HL/HG). We 
surveyed these heterotrophic MAGs for indicators of genome streamlining that facilitate 
survival under resource limitation. For example, reduced genome size, low GC content 
of nitrogenous bases, and increased percentage of coding DNA relative to noncod
ing nucleotides each facilitate a lower allocation of resources during DNA replication 
and population growth. Similarly, a reduction in transcription factors or sigma factors 
indicates reduced complexity and is often associated with oligotrophy (25). Lastly, we 
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surveyed genomes across the phosphorus gradient for variation in gene number and 
signatures of positive selection in genes associated with phosphorus acquisition and 
metabolism, such as alkaline phosphatases (26).

MATERIALS AND METHODS

Isolate collection

Colonies of M. aeruginosa were collected as described in Jackrel et al. (22). In brief, 
colonies were collected from 14 freshwater lakes in southern Michigan, USA, during 
July–August 2011 and August 2013. Lakes spanned a wide gradient of ~8–200 µg/L in 
total phosphorus (TP) concentration, which is a widely used index of lake productivity. 
This range of TP encompasses that of over 82% of lakes in the Northeastern USA (27). 
Water was collected from the mixed layer of each lake via a 12-m long integrated 
tube sampler, and subsets were stored for the measurement of lake TP via the molybde
num-blue colorimetric method with a persulfate digestion (28, 29). Standard thresholds 
for TP were used to assign lake trophic state, including 10 µg/L and 30 µg/L for the 
oligotrophic–mesotrophic and mesotrophic–eutrophic boundaries, respectively (30). TP 
measurements were taken for each lake at least three times during multiple years with 
the exception of Lake Lansing, which was sampled twice. Longer-term data sets for the 
nutrient content of these lakes can be found in Jackrel et al. (22).

Individual colonies of M. aeruginosa were isolated using a Pasteur micropipette 
and dissecting scope. While some large M. aeruginosa colonies are amorphous, loose 
aggregations of cells, we selected only smaller compact colonies that were distinctive 
in shape. To remove free-living bacteria and retain only closely associated bacteria 
within the host microbiome, including those embedded in the intercellular mucilage of 
the colony, we washed individual colonies by sequentially pipetting through a series 
of six-well plates containing sterile 0.5× WC-S growth medium. Similar washing steps 
have been proven effective at removing free-living microbes, and the use of WC-S 
growth medium should disfavor the survival of accompanying free-living heterotrophic 
microbes in the absence of an organic carbon source (31–33). Washed colonies were 
initially inoculated into 20 mL tubes of sterile WC-S growth medium and then main
tained in 200 mL batch cultures in 0.5× WC-S growth medium at 23°C under a 12:12 h 
light:dark cycle of 80 µmol m−2 s−1.

Amplicon and metagenomic sequencing

Biomass of each culture was collected, and DNA was extracted and sequenced as 
described in Jackrel et al. (22). In brief, samples of each M. aeruginosa culture were 
concentrated on 0.45 µm nitrocellulose filters, frozen immediately, and stored at −80°C. 
DNA was extracted using a Qiagen DNeasy Blood and Tissue Kit. The host−microbiome 
community of bacteria was surveyed by sequencing PCR amplicon of the V4 region of 
the 16S rRNA gene with 515f/806c primers on a 2 × 250 Illumina MiSeq v2 run at the 
University of Michigan Medical School. Metagenomic libraries were generated with a 
500-nt insert size using a Warfergen Biosystems Apollo 324 library preparation system. 
Metagenome sequences of the host and associated bacteria were generated on an 
Illumina HiSeq 100 cycle 2 × 100 nt PE run at the University of Michigan Sequencing 
Core. All raw sequencing data files are publicly accessible under SRA PRJNA351875. 
We trimmed raw metagenomic reads of adapters using Scythe and quality-trimmed 
reads using Sickle with default parameters (34). We assessed sequence quality before 
and after quality filtering using FastQC. We assembled sequencing reads into contigs 
using idba-ud with the following parameters: --mink 50, --maxk 92, --step 4 or 6, and 
--min_contig 500 (35). We then imported sequences of a minimum of 2 kb into VizBin, 
which uses nonlinear dimension reduction of tetranucleotide genomic signatures to 
bin contigs into taxonomic groupings. We manually selected and extracted clusters of 
sequences as metagenome-assembled genome bins. We partitioned sequences within 
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each bin into sample-specific FASTA files to generate MAGs. We determined percentage 
completeness, GC content, genome size, and coding density of each MAG using checkM 
(36). We summed sigma factors within each MAG by counting the number of genes 
assigned to any of the 27 protein families containing the keyword “sigma” within either 
the protein family name or protein family summary. To test whether these streamlin
ing metrics among heterotrophs differed across our three host groups, we used linear 
mixed-effects models using the lmer function in the lme4 package in R. For each model, 
one of the streamlining metrics was the dependent variable, host genotype was the 
fixed effect, and taxonomic grouping of the MAG was the random effect. We report 
the marginal R2 value for each model to describe the variance explained by the fixed 
factor (i.e., host genotype) (37). Due to our prior results on genome evolution in M. 
aeruginosa as well as predictions from genome streamlining theory, we then applied our 
a priori ordered predictions to calculate corrected P-values with a directional analysis 
of variance test using Spearman’s rank correlations (38). We also used phylogenetic 
comparative methods to test for a phylogenetic signal within each streamlining metric 
of heterotrophs across host groups. Specifically, we computed a phylogenetic analysis of 
variance with a directional correction test for our a priori ordered predictions. We also 
calculated Pagel’s λ and Moran’s I to probe for a phylogenetic signal using the R package 
phytools (39–41). For these phylogenetic approaches, we constructed a phylogeny of all 
four taxonomic groups built using the gyrB housekeeping gene with RAxML (42).

We focused our analysis on four taxonomic groups that each contained represen
tative MAGs from at least two of the three genotypes of the M. aeruginosa host. 
Within these groups, we retained all high- and medium-quality draft genomes as 
defined by Bowers et al. (43), which requires a minimum of 50% completeness and 
less than 10% contamination (43). We uploaded all high-quality draft MAGs to JGI 
Gold, and all high-quality and medium-quality draft MAGs into KBase. We determined 
the taxonomic identity and the pairwise average nucleotide identity (ANI) using the 
GTDB-Tk Classify and FastANI functions in KBase, respectively. After eliminating outlier 
MAGs as determined based on divergent taxonomic assignments and/or ANIs, we were 
able to extract a total of 16 MAGs of Aquidulcibacter spp. (family Hyphomonadaceae) 
that were a minimum of 70% complete with under 5% contamination, 7 MAGs of 
ELB16-189 spp. (family Cyclobacteriaceae) that were a minimum of 54% complete with 
under 9% contamination, 10 MAGs of SM1A02 spp. (family Phycisphaeraceae) that were 
a minimum of 73% complete with under 4% contamination, and 7 MAGs in the family 
Burkholderiacea that were a minimum of 53% complete with under 4% contamination 
(see full statistics in Table S1). We did not dereplicate our MAGs because we aimed to 
detect genomic differences derived from independently collected samples from across 
a phosphorus gradient (44). We constructed multilocus sequence typing phylogenies for 
each of the four taxonomic groups of heterotrophic bacteria. We used representative 
gene sequences of five housekeeping genes (pgi, gltX, ftsZ, glnA, and gyrB) from each 
taxonomic group to search for gene orthologs in the metagenomic data of each MAG 
by making custom blast databases and using the blastdbcmd command to extract 
sequence ranges based on blast output coordinates. For blast searches that failed to 
yield a gene match, we extracted gene sequences from JGI Gold annotations for each 
MAG, when available. We concatenated extracted gene sequences, aligned sequences 
with MUSCLE using default parameters, and trimmed alignments with Geneious (45). 
We constructed phylogenies using RAxML with Caulobacter vibrioides, Bacteroidetes 
cellulosilyticus, Bacillus subtilis, and Burkholderia psuedomallei used as outgroups of 
Aquidulcibacter spp., ELB16-189 spp., SM1A02 spp., and Burkholderiacea, respectively 
(42). Outgroup gene sequences were obtained from NCBI. Newick phylogenies were 
visualized in ggTree (46).

We then annotated these 40 MAGs using the KBase Annotate Microbial Assembly 
with RASTtk-v1.073 tool to generate protein family frequency tables. We used these 
tables to first complete an untargeted analysis to determine whether any protein 
families within these MAGs were associated with different phylogenetic groups of their 
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M. aeruginosa host. We ran separate analysis of variance models with false discovery 
rate corrections for each of the four taxonomic groupings of heterotrophic bacteria 
using STAMP (47). We then completed a targeted analysis of genes known to be 
important in phosphorus metabolism. For this analysis, we identified all relevant protein 
families by searching family descriptions at http://pfam.xfam.org/families and JGI Gold 
annotated MAGs for the following keywords: “alkaline,” “phosphatase,” “Pho,” “phospho
rus,” “phosphonate,” and “Phn.” Since we had a priori expectations based on a prior 
study of the M. aeruginosa host across this phosphorus gradient, we used directional 
analysis of variance for this analysis (38). Lastly, we tested for evidence of positive 
selection within all genes found in the low-nutrient branches of each taxonomic group 
of heterotrophic bacteria. We computed synonymous-to-nonsynonymous substitution 
rate ratios using default parameters in the PosiGene software package (48). Analyses 
were completed separately for each taxonomic group of heterotrophic bacteria, with 
orthologs identified against the most complete genome within each family as the anchor 
species (i.e., Aquidulcibacter K13-06, ELB16-189 L211-101, Burkholderiaceae BS13-02, and 
SM1A02 K13-06). To account for multiple comparisons, we applied a false-discovery rate 
correction.

RESULTS

Our data set included 40 high- and medium-quality draft MAGs of heterotrophic bacteria 
belonging to four taxonomic families that were obtained from enrichment cultures of 
28 strains of M. aeruginosa. These families include Cyclobacteriaceae, Burkholderiaceae, 
Hyphomonadaceae, and Phycisphaeraceae. Detailed quality information for each MAG 
is provided in Table S1. Additional MAGs belonging to other taxonomic groups were 
found only in association with one genotype of M. aeruginosa (i.e., LL/LG hosts or 
HL/HG hosts) and were excluded because these incomplete groups did not permit 
comparison of representative MAGs from across our phosphorus-based gradient of 
freshwater lakes. We found each of these four taxonomic groups diverged across the 
phosphorus gradient based on concatenated housekeeping genes (including ftsZ, glnA, 
gltX, gyrB, and pgi) (Fig. 1). These patterns of divergence across the phosphorus gradient 
are also evident by comparing pairwise average nucleotide identities across whole 
MAGs (see Table S2). We found that the genomes of heterotrophic bacteria found in 
association with LL/LG M. aeruginosa hosts collected from low-nutrient lakes demon
strated multiple indicators of evolutionary adaptation of oligotrophy. When assaying 
genome-wide trends of these heterotrophic bacteria, our results match the expectations 
of genome streamlining theory across a phosphorus-based gradient of freshwater lakes. 
Specifically, bacteria associated with LL/LG M. aeruginosa hosts tended to have reduced 
genome size, fewer sigma factors, and fewer core genes within their genomes compared 
to bacteria associated with the HL/HG M. aeruginosa hosts (Fig. 2A through C, linear 
mixed-effects models with directional analysis of variance, n = 40 MAGs; Fig. 2A Genome 
Size: host genotype fixed effect P < 0.05, marginal R2 = 0.098; Fig. 2B Sigma Factors: 
host genotype fixed effect P < 0.05, marginal R2 = 0.044; Fig. 2C % Completeness: host 
genotype fixed effect P < 0.05, marginal R2 = 0.078). Similarly, bacteria associated with 
LL/LG hosts tended to have a higher percentage of coding density as predicted by 
genome streamlining theory; however, this trend was not statistically significant (Fig. 
2D). Furthermore, we found that these bacteria demonstrated directional selection for 
a greater number of alkaline phosphatases (Fig. 3). Phylogenetic comparative meth
ods also indicated significant trends for each of these metrics (Fig. 2A Genome Size: 
phylogenetic ANOVA P < 0.10, Pagel’s λ = 0.924, P = 0.031, Moran’s I = 0.112, P = 0.088; 
Fig. 2B Sigma Factors: phylogenetic ANOVA P < 0.05, Pagel’s λ = 0.998, P < 0.001, Moran’s 
I = 0.661, P = 0.001; Fig. 2C Completeness: phylogenetic ANOVA P < 0.05, Pagel’s λ 
= 0.316, P = 0.21, Moran’s I = 0.152, P = 0.054; Fig. 2D Coding density: phylogenetic 
ANOVA P < 0.05, Pagel’s λ = 0.994, P < 0.001, Moran’s I = 0.560, P = 0.001; Fig. 3 Alkaline 
phosphatases: phylogenetic ANOVA P < 0.10, Pagel’s λ = 0.344, P = 0.0012, Moran’s I = 
0.408, P = 0.001).
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FIG 1 Divergent genome structure across phylogenies of four taxonomic families of heterotrophic bacteria associated with their host Microcystis aeruginosa 

collected across a phosphorus gradient of inland lakes in Michigan, USA. Multilocus sequence typing was used to determine evolutionary history with RAxML 

based on concatenated housekeeping genes (including ftsZ, glnA, gltX, gyrB, and pgi). Shown are the four heterotrophic groups with representatives from across 

the phosphorus gradient: (A) Aquidulcibacter spp., (B) Burkholderiaceae, (C) ELB16-189 spp., and (D) SMA102 spp. Green circles indicate heterotrophs associated 

with a HL/HG host, light blue indicates those associated with a HL/LG host, and dark blue indicates those associated with LL/LG hosts. Strain names include an 

abbreviation for the lake and year (i.e., G11-09 is the ninth colony collected from Gull Lake in 2011). Note Burkholderiaceae MAGs were found in two separate 

metagenome bins, with a gradient evident within each bin. Additionally, Phycisphaerales MAGs, including SM1A02 spp., were found in multiple metagenome 

bins; so, shown above are results from the metagenome bin that contained the largest number of MAGs. Phylogenetic distance of the outgroups is reduced by 

factors of 10 or 100× to aid in visualization.
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In addition to alkaline phosphatases, we also more broadly surveyed all genes 
involved in phosphorus metabolism. We found that within each of the four taxonomic 
groups of heterotrophic bacteria, there was evidence of positive selection acting on 
genes involved in phosphorus metabolism among the low-nutrient phylogenetic branch 
(Table 1). Enzymatic genes under positive selection among bacteria associated with 
LL/LG M. aeruginosa included those for glycerophosphodiester phosphodiesterase and 
glycerol-3-phosphate dehydrogenase for Aquidulcibacter spp.; carbamoyl-phosphate 
synthase for Burkholderiaceae; phosphoglycerate kinase, (d)CMP kinase, and N-acetyl-
gamma-glutamyl-phosphate reductase for ELB16-189 spp.; and glutamine-fructose-6-
phosphate transaminase and nucleoside diphosphate kinase for SM1A02 spp. Additional 
genes under positive selection are described in Table S3. In addition to our targeted 
analysis of divergence across the phosphorus gradient in alkaline phosphatases, we also 
conducted an untargeted analysis of gene differences across the phosphorus gradient by 

FIG 2 Heterotrophic bacteria found in close association with their Microcystis aeruginosa hosts demonstrate genome streamlining and reduced organismal 

complexity when residing in low-nutrient environments. When associated with M. aeruginosa collected from low-nutrient lakes (LL/LG) and those collected from 

high-nutrient lakes but with low-nutrient-type genomes (HL/LG), heterotrophic bacteria tended to have (A) reduced genome size (Mb), (B) fewer sigma factors, 

and (C) genomes with fewer core genes compared to those associated with high-nutrient HL/HG hosts. (D) Heterotrophic bacteria associated with LL/LG hosts 

also tended to have a higher percentage coding density; however, this trend was not statistically significant. Linear mixed-effects models with a directional 

correction test for our a priori ordered predictions within each of the four taxonomic groups by setting taxonomic group as a random factor were used. Trends 

should therefore be broad across taxa and not driven by any single taxonomic group.
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surveying all genes identified within MAGs. We report all 76, 54, and 21 genes that 
significantly differed across the phosphorus gradient in ELB16-189 spp., Burkholderiaceae, 
and Aquidulcibacter spp., respectively, in Fig. S1 through S3. Some notable findings 
include a phosphohydrolase domain (PF13286) that occurred only within LL/LG-
associated ELB16-189 spp., whereas a phosphate starvation gene (PF06146) and nitrogen 
regulatory protein (PF00543) occurred only in HL/HG-associated ELB16-189 spp. Within 
Aquidulcibacter spp., we found a calcineurin-like phosphoesterase (PF12850) and 
bacterial flagellin (PF00669) each in greater abundance among LL/LG than HL/HG-
associated strains, whereas bacterial regulatory proteins (PF0044) were found in greater 
abundance among HL/HG strains.

FIG 3 Heterotrophic bacteria found in close association with their Microcystis aeruginosa hosts demonstrate directional selection for an increased ability to 

acquire phosphorus when residing in low-nutrient environments. Heterotrophs associated with the most low-nutrient environments (i.e., associated with LL/LG 

hosts from low-nutrient lakes) contained the highest number of alkaline phosphatases. Linear mixed-effects models with a directional correction test for our a 

priori ordered predictions within each of the four taxonomic groups by setting taxonomic group as a random factor were used. Trends should therefore be broad 

across taxa and not driven by any single taxonomic group.

TABLE 1 Genes under positive selection for the low-nutrient branches of heterotrophic bacteria associated with their Microcystis aeruginosa host across a 
phosphorus gradient of freshwater lakes in Michigana

Taxon Gene function GenBank accession no. W FDR P-value

Aquidulcibacter spp. Glycerophosphodiester phosphodiesterase OYU75423.1 19.5 <0.0001
Aquidulcibacter spp. Glycero-3-phosphate dehydrogenase OYU75702.1 6.9 0.0093
Burkholderiaceae Carbamoyl-phosphate snythase large subunit MBL8534549.1 17.9 0.015
Burkholderiaceae Adenylate kinase MBK8018599.1 41.0 0.007
ELB16-189 spp. Histidine kinase NOS56772.1 20.2 0.0036
ELB16-189 spp. Phosphoglycerate kinase MCE2893864.1 34.7 0.0069
ELB16-189 spp. (d)CMP kinase MCE2893935.1 10.1 0.0069
ELB16-189 spp. N-acetyl-gamma-glutamyl-phosphate reductase NOS54628.1 38.6 0.0073
SM1A02 spp. Glutamine-fructose-6-phosphate transaminase MBX3410265.1 8.1 0.038
SM1A02 spp. Nucleoside diphosphate kinase MCG3122206.1 22.7 0.038
aGenes shown are those involved in phosphorus cycling and metabolism. A multiple comparisons correction was applied to significance values using a false-discovery rate 
(FDR). See Table S2 for all genes under positive selection. All results generated including ω (dN/dS) were computed in the PosiGene software using default parameters.
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DISCUSSION

Our results demonstrate that populations of host-associated microbes have undergone 
selection by the broader external environment. Four host-associated taxonomic families 
of heterotrophic bacteria showed adaptation across a phosphorus gradient through 
genome-wide signatures of streamlining and an increased capacity to both acquire and 
metabolize phosphorus. These trends apply broadly across all taxonomic families tested, 
rather than being driven by a single taxonomic group, due to our linear mixed-effects 
modeling approach. We reached similar biological conclusions of genome streamlining 
across multiple families of host-associated microbiomes using phylogenetic comparative 
methods. In combination with our prior results demonstrating metabolic interdepend
ence between Aquidulcibacter spp. and their host, these results elucidate that both the 
host and the environment are selective pressures shaping the bacterial populations 
inhabiting host microbiomes.

Adaptive responses of these host-associated heterotrophs in low-nutrient environ
ments included metrics of genome streamlining, where resource limitation is expected 
to select for reduced resource use in DNA replication and overall reduced complexity of 
the genome. Specifically, we found reduced genome size and fewer sigma factors among 
heterotrophs inhabiting low-nutrient conditions. A smaller genome requires fewer 
resources during DNA replication, and fewer sigma factors broadly indicate selective 
pressure against large, complex genomes. Furthermore, heterotrophs associated with 
the intermediate host group HL/LG were found to be intermediate relative to those 
associated with the HL/HG and LL/LG hosts in most metrics. This intermediate pat
tern was more evident for certain taxonomic groups, particularly SM1A02 spp. This 
suggests that these heterotrophs associated with HL/LG may have adapted to survive 
within low-nutrient microenvironments within high-nutrient lakes. While certain metrics 
were notably weaker for some taxonomic groups, including the number of sigma 
factors for Aquidulcibacter spp. and coding density for SM1A02 spp., the consensus 
from our linear-mixed modeling and phylogenetic comparative approaches indicate 
that genome streamlining is prevalent throughout Microcystis-associated heterotrophic 
bacteria. Some of these weaker trends may be due to smaller sample sizes and/or 
incomplete metagenome-assembled genomes. Still, considering the consistency of 
these results across each of the four heterotrophic taxa surveyed in this study, selection 
of traits among host-associated bacteria by external environmental conditions may be 
a wide-scale phenomenon. Indeed, these results are consistent with a recent study 
that found selection for genome streamlining under stressful environmental conditions 
among isolates of the free-living Bradyrhizobium diazoefficiens bacterium inhabiting the 
soil at the base of their acacia plant mutualists. We might elucidate the broader rules 
regulating trait selection among hosts and their associated bacteria through further 
studies that compare the degree of trait selection across different host–microbe systems 
experiencing varying types of stress gradients and degrees of host-association versus 
free-living lifestyles (49, 50).

We found multiple lines of evidence for the adaptation of host-associated microbes 
to oligotrophy, suggesting the external environment is a major selective force. First, 
we observed an expansion of alkaline phosphatase genes and positive selection 
for other genes involved in the efficient acquisition and metabolism of phosphorus, 
certainly adaptive under phosphorus-limited growth conditions. Second, the genomes 
of LL/LG-associated Aquidulcibacter spp. suggested increased cellular motility due to 
a greater abundance of bacterial flagella. Although coming at a high energetic cost, 
increased motility would conceivably facilitate the formation of host–microbe associa
tions in low-nutrient environments that harbor lower densities of hosts (relative to 
high-nutrient environments). Flagella also enable microbes to mix the diffusive boundary 
layer surrounding them as nutrients become depleted in their host microenvironment, 
further enhancing nutrient scavenging ability under lower-phosphorus conditions. Third 
was the loss of genes related to environmental sensing, including a phosphate starvation 
gene and nitrogen regulatory gene among LL/LG-associated ELB16-189 spp. This result 
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aligns with prior surveys of marine bacteria that identified the loss of two-component 
sensory systems as a hallmark of oligotrophy. These two-component sensory systems 
are the most common environmental sensing system among bacteria for detecting 
short-term shifts in nutrient availability, light, and temperature (51).

There is also substantial evidence that each of the four families included in our 
study forms close associations with M. aeruginosa across space and time. For example, 
Aquidulcibacter spp. have been identified in association with Microcystis spp. in Asia, 
North America, Europe, and Africa, with some close relatives of Aquidulcibacter spp. 
found as sessile cells embedded within the extracellular matrix of the algal phycosphere 
(52–54). ELB16-189 spp. has been found in association with M. aeruginosa colonies 
isolated from Lake Erie (55). Further suggesting a persistent association with its host, the 
genome of ELB16-189 spp. contains mlrA, which encodes for an enzyme to degrade the 
microcystin cyanotoxin produced by its host (55, 56). Burkholderiaceae have also been 
found in Asia and North America in association with M. aeruginosa and have genomic 
content indicative of an ability to degrade microcystin (57–59). Lastly, SM1A02 spp. is 
an anaerobic ammonium oxidizing bacterium found in association with M. aeruginosa 
blooms in Asia and Australia (60, 61). SM1A02 spp. has also been found in high abun
dance within the phycosphere of the bloom-forming cyanobacterium Raphidiopsisraci
borskii as well as marine dinoflagellates (62, 63).

Integrating our current findings with our past work in this system, we found 
several consistent ways in which low-nutrient stress caused trait selection in both 
the M. aeruginosa host and their associated heterotrophic bacteria. Both the host 
and their associated bacteria from low-nutrient environments shared indicators of 
genome streamlining, including percentage of coding DNA, number of sigma factors, 
and completeness. Both also demonstrated the selection for increased nutrient affinity, 
including increased gene copy number and/or signatures of positive selection of alkaline 
phosphatases, histidine kinases, and glutamate synthase. Determining whether this 
consistency in trait selection resulted from independent selection on hosts and their 
associated bacteria, or through co-evolutionary interactions, would be valuable for 
future study. Comparing the responses of hosts and their associated bacteria to different 
types of stressors may shed light on the relative roles of independent versus co-evo
lutionary trait selection. For example, in contrast to pressure to acquire phosphorus, 
a universally required nutrient, other selective pressures may differentially affect the 
host versus its associated microbes due to differing physiologies. Turbidity, for example, 
would be expected to be a substantial stressor for a photosynthetic host but have only 
limited direct effects on associated heterotrophic bacteria. Comparing the patterns of 
trait selection on paired hosts and their associated bacteria across different types of 
selective gradients might clarify the underlying mechanisms of evolutionary change in 
host–microbiome systems.

Results from our study suggest that environmentally mediated selection of host-
associated bacteria may have played a role in the recent expansion of blooms of M. 
aeruginosa and other undesirable planktonic cyanobacteria into low-nutrient habitats, 
where they are not typically expected (64, 65). Reduction of nutrient loading into 
freshwater environments is one of the most frequently used and historically effective 
mitigation efforts for controlling harmful phytoplankton blooms. Understanding the 
adaptation of both the host M. aeruginosa and heterotrophs within its microbiome 
to oligotrophy may guide the development of new mitigation efforts that may prove 
more effective against harmful phytoplankton. The negative environmental effects of 
harmful phytoplankton blooms are predicted to intensify with climate warming (66, 
67). Therefore, fully understanding the potential for genetic changes and subsequent 
directional selection within both the host and host microbiome may aid in predicting 
future range shifts and the mitigation of the negative effects of these blooms on 
freshwater ecosystem function and human health.

Beyond selective pressures shaping bacterial populations within the host micro
biome, we have previously identified ecological shifts in the community composition of 
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the M. aeruginosa microbiome across the phosphorus gradient via 16S rRNA ampli
con sequencing (22). In particular, Aquidulcibacter spp., the most abundant taxon in 
the M. aeruginosa microbiome, comprised the greatest proportion of the microbiome 
community among HL/HG genotypes and the least among LL/LG genotypes. Cyclobac
teriaceae and Burkholderaldes (the third and sixth most abundant taxa, respectively) 
showed the opposite trend, comprising a larger proportion of the community among 
LL/LG genotypes. Considering that we found similar patterns of local adaptation in each 
of the four heterotrophic taxa studied, the driving factors behind these ecological shifts 
in community composition remain unclear. Future studies may clarify the drivers of 
host microbiome shifts across habitats by assessing both ecological and evolutionary 
processes across resource gradients. Additionally, to understand the potential interac
tions between host–microbe ecology and microbial evolutionary change, future studies 
could probe whether the degree of host dependency of a bacterium corresponds with 
the degree of streamlining found in the bacterium’s genome. Such future work could 
measure host–microbe interdependency through metagenomic inferences, as we have 
done previously with Aquidulcibacter spp., or more directly through co-culture experi
ments (22). While we found evidence of genome streamlining among all taxa tested in 
this study, a systematic analysis of the magnitude of genome streamlining among all 
bacteria within a host microbiome could investigate whether this evolutionary trajectory 
corresponds with those bacteria that harbor the closest associations with their host.

It is important to note that our study has limitations inherent in all comparative 
studies of metagenome-assembled genomes. Apparent gene loss, such as loss of core 
genes among oligotrophic MAGs, could also result from incomplete MAGs due to the 
limitations of metagenomic assembly. We aimed to minimize the possibility of incorrect 
inferences of gene loss by using only high- and medium-quality MAGs as defined by 
Bowers et al. (43). Furthermore, our results should also be considered within the context 
of multiple simultaneous drivers of selection acting on members of the host micro
biome. As previously demonstrated, trait selection of the host M. aeruginosa has led to 
different ecotypes proliferating depending on lake nutrient status. It is conceivable that 
these evolutionary changes within M. aeruginosa could influence the composition and 
concentration of exudates within the phytoplankton phycosphere. Host genotype has 
been found to alter the composition of exudates and nutrients within plant rhizospheres 
(68). Therefore, without further study of precisely how the composition of exudates 
and nutrients in the microbiome varies among M. aeruginosa genotypes, we cannot 
disentangle whether the evolutionary changes we have observed among heterotrophs 
are a result of direct selection from the external environment or an indirect effect of 
the external environment on the host. Regardless of whether the evolutionary changes 
that we observed within this system are a result of direct or indirect effects, our results 
highlight the important role of the external environment in ultimately driving evolution
ary change among host-associated microbes.

Our work highlights the need for future studies aimed at disentangling the relative 
roles of the host versus the external environment in driving the evolutionary trajecto
ries of host-associated microbes. Controlled experimental evolution studies could be 
employed to quantify evolutionary changes within host-associated microbes in response 
to shifts in host identity versus shifts in external environmental conditions. Consider
ing the recent accumulation of evidence that host-associated microbes regulate many 
aspects of animal and plant host physiology and ecology, quantifying the role of external 
environmental stressors in driving microbial evolution of host-associated taxa may aid 
predictions of how host fitness and ecology may shift under changing environmental 
conditions.
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Supplementary Materials 
 

Table S1. Assembly quality and collection information for each MAG included in further 
analyses. Lake from which the M. aerginosa host was collected is described, including the mean 
soluble reactive phosphorus (SRP) for these lakes. Coloring of samples indicates whether the 
bacterium was associated with a HL/HG host (green), HL/LG host (light blue) or LL/LG host 
(dark blue). Contamination and completeness information generated from checkM. Bacterial 
taxonomy reported to genus when possible (phylum = P, class = C, order = O, family = F and 
genus = G).   

 
 

Collection Site Mean SRP (µg/L) of Collection Site Sample Contamination Completeness
MSU Lake 2, MI, USA 196.8 L211_11 0.89 94.73
MSU Lake 2, MI, USA 196.8 L211_101 0.6 98.36
Little Long Lake, MI, USA 8.0 LL13_03 2.11 67.29
Gull Lake, MI, USA 7.6 G13_03 0.6 98.36
Gull Lake, MI, USA 7.6 G13_07 8.6 53.59
Gull Lake, MI, USA 7.6 G13_11 0.89 98.07
Gull Lake, MI, USA 7.6 G13_12 0.6 98.36

Collection Site Mean SRP (µg/L) of Collection Site Sample Contamination Completeness
Baseline Lake, MI, USA 36.1 BS13_02 3.4 90.16
Lake Lansing, MI, USA 17.1 LG13_12 0 71.5
Kent Lake, MI, USA 23.6 K13_07 0.21 87.06
Wintergreen Lake, MI, USA 47.8 W13_16 0 53.01
Wintergreen Lake, MI, USA 47.8 W13_18 1.84 82.37
Gull Lake, MI, USA 7.6 G13_01 0 62.07
Gull Lake, MI, USA 7.6 G13_03 1.71 94.33

Collection Site Mean SRP (µg/L) of Collection Site Sample Contamination Completeness
Kent Lake, MI, USA 23.6 K13_06 0.24 98.48
MSU Lake 2, MI, USA 196.8 L211_11 0.61 79.35
Lake Lansing, MI, USA 17.1 LG13_03 0.24 98.48
Lake Lansing, MI, USA 17.1 LG13_12 0.89 97.84
Wintergreen Lake, MI, USA 47.8 W11_03 0.57 98.16
Wintergreen Lake, MI, USA 47.8 W11_06 0.41 98.48
Wintergreen Lake, MI, USA 47.8 W13_11 0.57 98.16
Baseline Lake, MI, USA 28.0 BK11_02 0.6 80.08
Kent Lake, MI, USA 23.6 K13_07 0.35 98.16
Wintergreen Lake, MI, USA 47.8 W13_15 0.24 98.48
Wintergreen Lake, MI, USA 47.8 W13_18 0.57 98.16
Gull Lake, MI, USA 7.6 G11_01 4.63 96.35
Gull Lake, MI, USA 7.6 G11_06 0.41 98.48
Gull Lake, MI, USA 7.6 G11_09 1.46 70.81
Little Long Lake, MI, USA 8.0 LL13_06 1.35 78.11
Sixteen Lake, MI, USA 8.8 SX13_01 2.99 77.8

Collection Site Mean SRP (µg/L) of Collection Site Sample Contamination Completeness
Baseline Lake, MI, USA 36.1 BS13_02 2.27 73.07
Kent Lake, MI, USA 23.6 K13_05 0 95.08
Kent Lake, MI, USA 23.6 K13_06 2.27 97.73
Kent Lake, MI, USA 23.6 K13_10 3.36 97.73
MSU Lake 2, MI, USA 196.8 L211_101 1.7 96.59
Wintergreen Lake, MI, USA 47.8 W11_06 0 97.73
Baseline Lake, MI, USA 36.1 BS13_10 0.1 96.59
Sherman Lake, MI, USA 13.7 S11_05 0.57 93.18
Wintergreen Lake, MI, USA 47.8 W13_18 0 92.95
Gull Lake, MI, USA 7.6 G11_06 0 92.05

P:Bacteroidota;C:Bacteroidia;O:Cytophagales;F:Cyclobacteriaceae;G:ELB16-189

P:Proteobacteria;C:Gammaproteobacteria;O:Burkholderiales;F:Burkholderiaceae

P:Proteobacteria;C:Alphaproteobacteria;O:Caulobacterales;F:Hyphomonadaceae;G:Aquidulcibacter

P:Planctomycetota;C:Phycisphaerae;O:Phycisphaerales;F:Phycisphaeraceae; G:SM1A02;S:UBA2396



Table S2. A) Average nucleotide identities (ANI) of 16 MAGs of Aquidulcibacter spp. (Phylum: 
Proteobacteria; Class: Alphaproteobacteria; Order: Caulobacterales; Family: 
Hyphomonadaceae; Genus: Aquidulcibacter). B) ANI of 7 MAGs of Burkholderiaceae (Pylum: 
Proteobacteria; Class: Gammaproteobacteria; Order: Burkholderiales; Family: 
Burkholderiaceae). C) ANI of 7 MAGs of ELB16-189 spp. (Phylum: Bacteroidota; Class: 
Bacteroidia; Order: Cytophagales; Family: Cyclobacteriaceae). D) ANI of 10 MAGs of SM1A02 
spp. (Phylum: Planctomycetota; Class: Phycisphaerae; Order: Phycisphaerales: F: 
Phycisphaeraceae). Colors indicate the phylogenetic grouping of the Microcystis aeruginosa 
host colony that each bacterium was found in close association with within the phytoplankton 
microbiome. 

 
  

A) K13_06 L211_11 LG13_03 LG13_12 W11_03 W11_06 W13_11 BK11_02 K13_07 W13_15 W13_18 G11_01 G11_06 G11_09 LL13_06 SX13_01

K13_06 1 96.5376 97.0492 88.2447 88.3663 97.0535 88.4154 97.0618 96.9221 97.9404 88.3331 87.9332 88.0404 89.5085 87.248 88.8815

L211_11 1 96.6789 87.6528 87.511 96.6366 87.5413 95.1418 96.5376 96.2467 87.6406 87.1293 87.283 87.9216 86.3439 87.5407

LG13_03 1 88.4956 88.4396 98.8165 88.4406 96.1363 99.0812 96.8376 88.4141 87.7168 87.8675 89.2916 87.1889 88.6875

LG13_12 1 99.0343 88.4793 99.014 87.6753 88.5374 88.2193 99.0276 94.8781 95.02 89.6593 94.286 90.8661

W11_03 1 88.514 99.8979 88.2958 88.4877 88.3508 99.8883 94.8994 95.034 89.6677 94.2753 90.8541

W11_06 1 88.5354 96.0137 98.6301 96.9036 88.5373 87.718 87.9634 89.7327 87.2394 88.9121

W13_11 1 87.9142 88.4647 88.4551 99.9988 94.968 95.0902 89.5657 94.4012 90.9291

BK11_02 1 96.5453 97.6667 88.2936 87.1824 87.3129 88.6163 86.6534 87.9481

K13_07 1 96.7595 88.4617 87.763 87.8977 89.6478 87.1311 88.7651

W13_15 1 88.4067 87.8146 87.9367 89.1691 87.3885 88.8538

W13_18 1 94.9015 95.072 89.6886 94.4351 90.8549

G11_01 1 99.8931 88.8815 98.8498 91.076

G11_06 1 89.7206 98.9541 91.0794

G11_09 1 88.3285 91.1908

LL13_06 1 89.974

SX13_01 1

B) BS13_02 LG13_12 K13_07 W13_16 W13_18 G13_01 G13_03

BS13_02 1 77.0695 76.5958 77.3532 76.9622 77.4597 76.4633

LG13_12 1 78.2893 78.8549 79.0673 78.5043 77.3104

K13_07 1 78.8602 81.5566 78.4934 78.8083

W13_16 1 79.9714 86.2925 79.1338

W13_18 1 79.4675 79.8305

G13_01 1 78.4462

G13_03 1

C)
L211_11 L211_101 LL13_03 G13_03 G13_07 G13_11 G13_12

L211_11 1 99.9604 93.6942 94.6994 93.0672 94.7511 94.683

L211_101 1 94.255 95.0439 94.1451 95.0063 94.9564

LL13_03 1 96.8901 94.2285 96.0843 96.1225

G13_03 1 95.8513 96.9834 99.9818

G13_07 1 96.3037 96.5712

G13_11 1 96.9478

G13_12 1

D)
BS13_02 K13_05 K13_06 K13_10 L211_101 W11_06 BS13_10 S11_05 W13_18 G11_06

BS13_02 1 76.0423 78.0341 77.719 77.1084 77.3198 77.887 77.0725 77.0587 78.0055

K13_05 1 75.958 75.9503 75.778 76.1026 75.9455 75.7821 75.9763 75.5987

K13_06 1 78.3835 77.5414 77.1467 77.4142 76.8322 77.2702 77.8866

K13_10 1 77.9067 77.3198 78.1375 76.817 77.3408 77.1919

L211_101 1 76.872 78.1695 77.4901 77.3499 78.0331

W11_06 1 76.5191 76.9193 88.8217 76.113

BS13_10 1 85.7399 76.6009 77.3742

S11_05 1 76.5735 76.8591

W13_18 1 76.2302

G11_06 1

Burkholderiaceae

ELB16-189 spp.

SM1A02 spp.

Aquidulcibacter spp.



 

Figure S1. Metagenome assembled 
genomes (MAGs) of ELB16-189 spp. 
found in association with their 
Microcystis aeruginosa hosts collected 
from inland lakes of Michigan differed 
significantly in the abundances of 
protein families across two different 
phylogenetic groups of M. aeruginosa. 
Heatmap color depicts gene counts for 
each MAG, where lighter colors 
indicate fewer genes identified in that 
MAG.  



  
 
 
 
 
 
 
 

Figure S2. Metagenome assembled 
genomes (MAGs) of 
Burkholderiaceae found in 
association with their Microcystis 
aeruginosa hosts collected from 
inland lakes of Michigan differed 
significantly in the abundances of 
protein families across two 
different phylogenetic groups of M. 
aeruginosa. Heatmap color depicts 
gene counts for each MAG, where 
lighter colors indicate fewer genes 
identified in that MAG. 

 

 

 

 



Figure S3. Metagenome assembled genomes (MAGs) of Aquidulcibacter spp. found in 
association with their Microcystis aeruginosa hosts collected from inland lakes of Michigan 
differed significantly in the abundances of protein families across three phylogenetic groups of 
M. aeruginosa. Heatmap color depicts gene counts for each MAG, where lighter colors indicate 
fewer genes identified in that MAG.  
 

 
 
 
 
 
 
 
 
 
 
 
 



 
Table S3. Genes under positive selection for the low-nutrient branches of heterotrophic bacteria 
associated with their Microcystis aeruginosa host across a phosphorus gradient of freshwater 
lakes in Michigan. Multiple comparisons corrections are applied to all reported significance 
values using a false-discovery rate (FDR). All results generated including ω (dN/dS) were 
computed in the PosiGene software using default parameters.  

 

Taxon Gene Function GenBank Accession ω FDR P-value
Aquidulcibacter spp. Glycerophosphodiester phosphodiesterase OYU75423.1 19.5 < 0.0001
Aquidulcibacter spp. Hypothetical protein WP_157893645.1 45.5 0.00045  
Aquidulcibacter spp. Acyltransferase MCE2891036.1 4.3 0.0088
Aquidulcibacter spp. Glycero-3-phosphate dehydrogenase OYU75702.1 6.9 0.0093
Aquidulcibacter spp. Single-stranded DNA binding protein AMS28890.1 6.3 0.015
Aquidulcibacter spp. SAM-dependent methyltransferase MCE2891380.1 0.9 0.031
Aquidulcibacter spp. SH-3 domain containing protein MCA3697727.1 3.3 0.031
Aquidulcibacter spp. Hypothetical protein MCE2891713.1 1.2 0.041
Aquidulcibacter spp. Fumarate hydratase OYU75747.1 1.9 0.041

Burkholderiaceae NAD synthetase MBI1398353.1 35.6 < 0.0001
Burkholderiaceae Molecular chaperone DnaK MBI1395336.1 13.8 < 0.0001
Burkholderiaceae MreB/Mrl family cell shape determining protein MBI1395722.1 23.7 0.00011
Burkholderiaceae Aconitate hydratase AcnA MBK8017540.1 31.5 0.00015
Burkholderiaceae Tryptophan synthase subunit beta MBI1395361.1 27.8 0.00016
Burkholderiaceae Type 1 glutamate--ammonia ligase MBK8015780.1 2.4 0.00018
Burkholderiaceae Acetate--CoA ligase MBK8017563.1 20.2 0.00026
Burkholderiaceae Transcription termination factor Rho MBK8019452.1 25.5 0.00039
Burkholderiaceae Type IV pilus twitching motility protein PilT MBX9964912.1 23.4 0.00054
Burkholderiaceae Ferredoxin:protochlorophyllide reductase MCE2988984.1 1.0 0.00058
Burkholderiaceae  Homoserine dehydrogenase MBX9630227.1 18.3 0.0009
Burkholderiaceae Carbamoyl-phosphate snythase large subunit MBL8534549.1 17.9 0.0013
Burkholderiaceae Chaperonin GroEL MBK8016565.1 3.6 0.0014
Burkholderiaceae Malate dehydrogenase MBI1395919.1 35.3 0.0019
Burkholderiaceae ATP-dependent chaperon ClpB MBK8016976.1 12.2 0.0033
Burkholderiaceae NADP-dependent isocitrate dehydrogenase MBS1835266.1 35.4 0.0068
Burkholderiaceae Adenylate kinase MBK8018599.1 41.0 0.0071
Burkholderiaceae Glutamate synthase small subunit MBI1394600.1 43.6 0.044
Burkholderiaceae 50S ribosomal protein MBE7459758.1 32 0.049
ELB16-189 spp. Lycopene cyclase domain-containing protein MCA6380863.1 4.2 0.00018
ELB16-189 spp. PA0069 family radical SAM protein MCA4895312.1 5.0 0.0011
ELB16-189 spp. Histidine kinase NOS56772.1 20.2 0.0036
ELB16-189 spp. Leucine-rich repeat domain-containing protein MCA6381522.1 7.0 0.0053
ELB16-189 spp. Thioredoxin family protein MCA4896252.1 17.3 0.0062
ELB16-189 spp. Phosphoglycerate kinase MCE2893864.1 34.7 0.0069
ELB16-189 spp. Hypothetical protein MCA4896819.1 28.3 0.0069
ELB16-189 spp. (d)CMP kinase MCE2893935.1 10.1 0.0069
ELB16-189 spp. PorT family protein MCA4895725.1 1.0 0.0069
ELB16-189 spp. N-acetyl-gamma-glutamyl-phosphate reductase NOS54628.1 38.6 0.0073
ELB16-189 spp. Hypothetical protein MCA4894646.1 9.0 0.013
ELB16-189 spp. Cytochrome c MCA4894720.1 0.94 0.015
ELB16-189 spp. Domain of unknown function MCE2893758.1 12.6 0.015
ELB16-189 spp. Hypothetical protein MCE2895054.1 14.6 0.020
ELB16-189 spp. Domain of unknown function MCA4893368.1 2.3 0.024
ELB16-189 spp. Four helix bundle protein MCE2896249.1 23 0.032
ELB16-189 spp. Carboxypeptidase-like regulatory domain-containing protein MCE2892883.1 2.1 0.039
ELB16-189 spp. GNAT family N-acetyltransferase MCA4894821.1 1.6 0.046
SM1A02 spp. DNA-directed RNA polymerase subunit beta CAG0976239.1 21.7 0.00097
SM1A02 spp. Malate dehydrogenase GJQ29836.1 16.5 0.0069
SM1A02 spp. Type II secretion system protein E CAG0987074.1 26.9 0.0069
SM1A02 spp. Acyl-CoA dehydrogenase family protein MBU6412920.1 15.3 0.012
SM1A02 spp. Type IV pilus twitching motility protein PiIT MCE7974048.1 1.8 0.012
SM1A02 spp. Hypothetical protein MBY0312594.1 29.4 0.012
SM1A02 spp. Polyribonucleotide nucleotidyltransferase MBL9001969.1 16.6 0.012
SM1A02 spp. DEAD/DEAH box helicase MBL0870730.1 22.9 0.012
SM1A02 spp. F0F1 ATP synthase subunit alpha  MCC6428159.1 20.3 0.013
SM1A02 spp. 30S ribosomal protein S19 MBY0111629.1 44.3 0.015
SM1A02 spp. 50S ribosomal protein L16 MBS0186779.1 40.3 0.024
SM1A02 spp. Dihydrolipoyl dehydrogenase QQS07936.1 13.3 0.036
SM1A02 spp. Thiazole synthase MCK6478149.1 3.0 0.036
SM1A02 spp. 30S ribosomal protein S13 MBI1190348.1 5.1 0.036
SM1A02 spp. 50S ribosomal protein L33 MCC6952469.1 59.1 0.037
SM1A02 spp. Hypothetical protein QOJ01220.1 17.8 0.037
SM1A02 spp. Polyribonucleotide nucleotidyltransferase CAG0977193.1 0.89 0.038
SM1A02 spp. Glutamine--fructose-6-phosphate transaminase MBX3410265.1 8.1 0.038
SM1A02 spp. Nucleoside diphosphate kinase MCG3122206.1 22.7 0.038
SM1A02 spp. Pyruvate dehydrogenase subunit beta GDX97827.1 30.4 0.038
SM1A02 spp. Biosynthetic arginine decarboxylase MBU6411968.1 9.9 0.045
SM1A02 spp. NADH-quinone oxidoreductase subunit B MBK9188239.1 5.2 0.045
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